
More Precise Regression Test Selection via
Reasoning about Semantics-Modifying Changes

Yuki Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, Owolabi Legunsen

Regression testing

• Execute tests for each new code revision
• Check if the code changes break existing functionality

• Regression testing is costly
• Google TAP handles 800k builds and runs 150 million tests per day
• Microsoft’s CloudBuild (used by >4k developers) handles 20k builds per day

1

T1 T2 T3

A B C
classes
under test

test classes

Regression test selection (RTS)

• Rerun only tests that are affected by changes
• Safety: RTS selects all affected tests
• Precision: RTS selects only affected tests
• Goal: RTS runs fewer tests and runs tests faster than re-running all tests

2

T1 T2 T3

A B C
selected test

changed class

depends on

classes
under test

test classes

RTS tools that we improve: Ekstazi & STARTS

• Ekstazi[1]

• dynamically tracks classes used while running tests

• STARTS[2]

• statically builds a dependency graph
• each class has an edge to direct parents and referenced classes

3[1] Gligoric, Milos, Lamyaa Eloussi, and Darko Marinov. "Practical regression test selection with dynamic file dependencies." ISSTA 2015
[2] Legunsen, Owolabi, August Shi, and Darko Marinov. "STARTS: STAtic regression test selection." ASE 2017

Motivation for this work

• Improve RTS precision without sacrificing safety

• Generalize related work like REKS[1], which improves RTS precision by
skipping tests that are only affected by semantics-preserving changes

• Find semantics-modifying changes do not require re-running all tests
that current RTS selects

4[1] Wang, Kaiyuan, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and Milos Gligoric. "Towards refactoring-aware regression test selection." ICSE 2018

Leveraging semantics-modifying changes
(removing throws clause example)
• The change only removes a throws clause from a method signature
• No other class uses reflection to invoke changed method
• Code still compiles
• Ekstazi and STARTS needlessly re-run 15 and 22 test classes

5

public class Percentile extends AbstractUnivariateStatistic {
 public Percentile (final double quantile) throws MathException {
 public Percentile (final double quantile) {

...
}

}

-
+

Code is simplified from apache/commons-math

Leveraging semantics-modifying changes
(new method example)
• The change only adds a new method to a class
• No test class transitively depends on the newly added method
• The newly added method does not override another method
• Ekstazi and STARTS can skip 8 and 9 test classes

6

public abstract class Email {
public String getHeader(final String header) {
 return headers.get(header);

}

 public void buildMimeMessage() { … }
}

+
+
+

Code is simplified from apache/commons-email

How we found and leverage changes

7

5 projects

50 revisions each
…

Manually analyze changes
(add, remove, modify) to
constructors, fields, methods,
classes, annotations…

13 findings where RTS
may safely skip tests

11 of them are semantics-
modifying changes

2 are refactoring, sorting
methods and renaming
methods/classes

Apply findings to Ekstazi
and STARTS
->
Implement FineEkstaziF
and FineSTARTSF

Hybrid dependency
(class + method)
->
Implement FineEkstazi
and FineSTARTS

Overview of FineRTSF

new code

old metadata

dependencies

old cksum

new cksum

changes

affected tests

2
3

4

1

1

getAffectedTests

getModified

1. Load (field, constructor, method) metadata from running RTS on old revision
2. compute new checksum from current revision
3. compute changed classes using the old and new checksum
4. compute affected test classes where at least one dependency changed

8

Overview of FineRTS

new code

old metadata

dependencies

old cksum

new cksum

changes

affected tests

2
3

4

1

1

getAffectedTests

getModified

dependencies
class level -> hybrid of class, method, and field level

9

Evaluation

• RQ1: Impact on RTS selection rates

• RQ2: Impact on end-to-end time

• RQ3: Impact on safety

• RQ4: Spread of manual analysis findings

10

SHA -2SHA -50 ….

Evaluation Setup

11

23 projects
(test time > 10s)

git clone ${project}

SHA 0SHA -1

No. of selected tests
or
end-to-end time

Ekstazi EkstaziF FineEkstazi STARTS STARTSF FineSTARTS

lower values on the y-axis are better

RQ1: Reduction in number of selected tests

12

0
5

10
15
20
25
30
35
40
45

Ekstazi EkstaziF FineEkstazi STARTS STARTSF FineSTARTS

Pe
rc

en
ta

ge
 o

f s
el

ec
te

d
te

st

cl
as

se
s o

ve
r R

et
es

tA
ll

(%
)

RQ1: Reduction in number of selected tests
On average, FineEkstazi selects 19.1% fewer tests than Ekstazi;
 FineSTARTS selects 14.8% fewer tests than STARTS.

13

0
5

10
15
20
25
30
35
40
45

Ekstazi EkstaziF FineEkstazi STARTS STARTSF FineSTARTS

Pe
rc

en
ta

ge
 o

f s
el

ec
te

d
te

st

cl
as

se
s o

ve
r R

et
es

tA
ll

(%
)

14.8%

19.1%

RQ2: Reduction in end-to-end time

14

0

10

20

30

40

50

60

70

Ekstazi EkstaziF FineEkstazi STARTS STARTSF FineSTARTS

Pe
rc

en
ta

ge
 o

f t
im

e
ov

er

Re
te

st
Al

l (
%

)

RQ2: Reduction in end-to-end time
On average, FineEkstazi reduces the end-to-end time of Ekstazi by 34.5%;
 FineSTARTS reduces the end-to-end time of STARTS by 29.0%.

15

0

10

20

30

40

50

60

70

Ekstazi EkstaziF FineEkstazi STARTS STARTSF FineSTARTS

Pe
rc

en
ta

ge
 o

f t
im

e
ov

er

Re
te

st
Al

l (
%

) 34.5%

29.0%

RQ3 (safety) and RQ4 (re-occurrence)

• RQ3: Impact on safety

RTSCheck[1] did not find more violations in FineEkstazi and FineSTARTS
compared to Ekstazi and STARTS. (More details in the paper.)

• RQ4: Re-occurence of manual analysis findings in other projects

~60% of revisions in projects that we did not manually analyze contain the
kinds of findings that we leverage. (More details in the paper.)

16[1] Zhu, Chenguang, Owolabi Legunsen, August Shi, and Milos Gligoric. "A framework for checking regression test selection tools." ICSE 2019

Conclusion

• Goal: improve RTS precision without sacrificing safety
• Approach: find and leverage semantics-modifying changes
• Outcomes:

• develop FineEkstazi and FineSTARTS
• reduce selected tests by 19% (FineEkstazi), 15% (FineSTARTS)
• reduce end-to-end time by 35% (FineEkstazi), 29% (FineSTARTS)
• FineEkstazi and FineSTARTS are as safe as Ekstazi and STARTS

17

https://github.com/EngineeringSoftware/FineRTS

yuki.liu@utexas.edu

