
More Precise Regression Test Selection
via Reasoning about Semantics-Modifying Changes

Yu Liu
The University of Texas at Austin

USA
yuki.liu@utexas.edu

Jiyang Zhang
The University of Texas at Austin

USA
jiyang.zhang@utexas.edu

Pengyu Nie
The University of Texas at Austin

USA
pynie@utexas.edu

Milos Gligoric
The University of Texas at Austin

USA
gligoric@utexas.edu

Owolabi Legunsen
Cornell University

USA
legunsen@cornell.edu

ABSTRACT

Regression test selection (RTS) speeds up regression testing by only

re-running tests that might be a�ected by code changes. Ideal RTS

safely selects all a�ected tests and precisely selects only a�ected

tests. But, aiming for this ideal is often slower than re-running

all tests. So, recent RTS techniques use program analysis to trade

precision for speed, i.e., lower regression testing time, or even use

machine learning to trade safety for speed. We seek to make recent

analysis-based RTS techniques more precise, to further speed up re-

gression testing. Independent studies suggest that these techniques

reached a “performance wall” in the speed-ups that they provide.

We manually inspect code changes to discover those that do not

require re-running tests that are only a�ected by such changes.

We categorize 29 kinds of changes that we �nd from �ve projects

into 13 �ndings, 11 of which are semantics-modifying. We enhance

two RTS techniques—Ekstazi and STARTS—to reason about our

�ndings. Using 1,150 versions of 23 projects, we evaluate the impact

on safety and precision of leveraging such changes.We also evaluate

if our �ndings from a few projects can speed up regression testing in

other projects. The results show that our enhancements are e�ective

and they can generalize. On average, they result in selecting 41.7%

and 31.8% fewer tests, and take 33.7% and 28.7% less time than

Ekstazi and STARTS, respectively, with no loss in safety.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Software evolution.

KEYWORDS

Regression test selection, regression testing, semantics-modifying

changes, change-impact analysis

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598086

ACM Reference Format:

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen.

2023. More Precise Regression Test Selection via Reasoning about Semantics-

Modifying Changes. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023,

Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3597926.3598086

1 INTRODUCTION

Regression testing is the dominant quality assurance approach

today; it commonly re-runs all tests (RetestAll) to check that code

changes do not introduce bugs. But, RetestAll costs are growing

rapidly with increasing rates of updates and growth in code size [31,

70]. So, without cost-reducing automated techniques, developers

may test less, or use manual ad hoc approaches that miss bugs [29].

Regression test selection (RTS) reduces regression testing costs

by only re-running tests that are a�ected by changes. A�ected tests

are computed as those that transitively depend on changed code.

Researchers studied RTS for decades [10, 11, 14, 17, 18, 21, 22, 27,

28, 30, 32–34, 37, 39, 41, 42, 50, 54–58, 60–62, 64, 65, 68, 69, 74] and

recent techniques [5, 8, 9, 19, 26, 40, 53, 66] are being adopted.

Ideally, RTS would safely select all a�ected tests and precisely

select only a�ected tests. But, RTS techniques that aim for safety

and precision are often slower than RetestAll [25, 27, 50].

Recent RTS techniques that are being adopted make two kinds

of trade-o�s. First, some techniques based on program analysis

trade precision for speed, i.e., lower end-to-end regression testing

time, when selecting a�ected tests. The rationale is that developers

likely prefer safe but imprecise RTS that is faster than RetestAll to

unsafe RTS, or safe and precise RTS that is slower than RetestAll.

Second, some techniques trade safety for speed, typically by training

machine learning (ML) models to only select tests that may fail (i.e.,

not all a�ected tests) after a change [7, 44, 45]. The rationale is that

a failing test su�ces to initiate debugging.

We seek to speed up recent analysis-based RTS techniques be-

cause they seem to have reached a “performance wall”—a limit

on how much they can speed up regression testing. Independent

studies showed similar average ratios of selected tests and aver-

age time reduction on di�erent projects and sets of project revi-

sions [10, 39, 63, 67, 73]. So, the next generation of RTS techniques

should break this performance wall to improve on the gains of

the existing ones. Sections 7 and 8 position our work relative to

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

664

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598086
https://doi.org/10.1145/3597926.3598086
https://doi.org/10.1145/3597926.3598086

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

ML-based RTS. There, we show that our improved analysis-based

RTS performs better than the state-of-the-art ML-based RTS.

The technical challenge that we address in this paper is how to

speed up regression testing by making analysis-based RTS more

precise without sacri�cing safety. We do so based on the idea that

some semantics-modifying code changes do not require re-running

all tests that analysis-based RTS selects. For example, suppose

that the only change to a Java class that has no ancestors (except

java.lang.Object) or descendants is the deletion of a method.

If the resulting code compiles, then a class-level RTS technique

need not re-run test classes that are only a�ected by this deletion.

Our approach therefore generalizes related work like Reks [67],

which improves RTS precision by not re-running tests that are only

a�ected by semantics-preserving changes, i.e., refactorings.

We hypothesize that identifying and reasoning about the kinds

of changes that we target can further reduce end-to-end regression

testing time at the cost of increased RTS analysis time. End-to-end

regression testing time with RTS consists of collection time to �nd

test dependencies, analysis time to �nd a�ected tests, and execution

time to run selected tests.

To identify kinds of code changes for which analysis-based RTS

may safely skip to re-run some tests, we manually inspect developer

changes in 250 revisions of 5 open-source projects. We �nd 29 such

kinds of changes and organize them into 13 �ndings, 11 of which

are semantics-modifying. We do not claim to have discovered an

exhaustive list of kinds of changes that can be used to make RTS

more precise. Rather, we use those that we discover to investigate if

RTS that reasons about them is e�ective for speeding up end-to-end

regression testing time, and if information discovered from some

projects help make RTS more precise in other projects. Future work

can pursue the discovery of more of such kinds of changes.

We enhance Ekstazi (a dynamic class-level RTS technique) [26]

and STARTS (a static class-level RTS technique) [40] to reason about

the kinds of changes that we �nd. We call the enhanced techniques

FineEkstazi and FineSTARTS; they enable us to evaluate the im-

pact of our work on dynamic and static RTS paradigms. Finding and

leveraging these kinds of changes is a one-time cost paid by RTS

tool developers, not by the users of FineEkstazi and FineSTARTS.

We evaluate our enhanced RTS techniques on other projects

and revisions than those from which we discover the kinds of

changes that we use. We run FineEkstazi and FineSTARTS on 50

revisions each in 23 open source projects (total: 1,150 revisions).

Then, we compare the number of selected tests, the end-to-end

times, and the analyses times of FineEkstazi and FineSTARTS

with those of Ekstazi and STARTS. We also evaluate the safety of

FineEkstazi and FineSTARTS relative to Ekstazi and STARTS by

using RTSCheck [75] to check all four implementations. Finally,

to assess the prevalence of the kinds of changes that we leverage,

we manually compare the kinds of changes in 250 of these 1,150

revisions with those that we used during the discovery process.

The results show that reasoning about these kinds of changes is

e�ective for improving RTS precision and speeding up regression

testing. FineEkstazi reduces the number of selected tests and the

end-to-end regression testing time by as much as 80.8% (average:

41.7%) and 55.4% (average: 33.7%), compared to Ekstazi. The com-

parative numbers for FineSTARTS’s improvement over STARTS

are 71.2% (average: 31.8%) and 60.6% (average: 28.7%). FineEkstazi

1 class A {

2 - public int m(int x, int y){ return x - y; }

3 + public int m(int x, int y){ return x / y; }

4 }

5 class B {

6 public int m(int x, int y){ return x + y; }

7 }

8 class C {

9 public int m(int x, int y) throws Exception {

10 Object a = Class.forName("A").newInstance ();

11 Method m = a.getClass ().getMethod("m", ...);

12 return m.invoke(a, x, y);

13 }

14 }

1 class T1{

2 @Test void t1(){assertEqual (2, new A().m(5, 3);}

3 }

4 class T2{

5 @Test void t2(){assertEquals (8, new B().m(5, 3);}

6 }

7 class T3{

8 @Test void t3()

9 throws Exception{assertEquals (4, new C().m(7, 3);}

10 @Test void t4(){assertEquals (10, new B().m(7, 3);}

11 }

Figure 1: Code and tests for illustrating Ekstazi and STARTS.

is also faster than HyRTS [73], which is a dynamic RTS tool that

is more precise than Ekstazi and STARTS. But, future work could

enhance HyRTS to reason about the kinds of changes that we �nd.

FineEkstazi and FineSTARTS make Ekstazi and STARTS more

precise and speed up regression testing without sacri�cing safety.

Our analysis of the RTSCheck results shows that FineEkstazi and

FineSTARTS do not incur any new safety violations compared to

Ekstazi and STARTS. Lastly, our manual checks show that 250 (of

1,150) revisions contain several but not all of the kinds of changes

that we �nd. Changes in the manually checked revisions map to 10

out of 13 kinds of changes. So, while the kinds of changes varied

across programs’ revision histories, the kinds of changes that we

�nd apply beyond the projects from which we obtained them.

This paper makes the following contributions:

★ Idea.We use reasoning about semantics-modifying changes to

make RTS more precise without sacri�cing safety.

★ Kinds of changes.We produce an initial set of kinds of changes

that future work can build on to make RTS even more precise.

★ Tools. We develop FineEkstazi and FineSTARTS as manual-

analysis driven enhancements of Ekstazi and STARTS.

★ Evaluation.We �nd that reasoning about these kinds of changes

speeds up regression testing and can generalize across projects.

Our data is at https://github.com/EngineeringSoftware/FineRTS.

2 BACKGROUND AND EXAMPLES

We use examples to describe Ekstazi, STARTS, and semantics-

modifying changes for which it is safe to not re-run some tests.

Recent RTS techniques. Ekstazi and STARTS are recent analysis-

based class-level RTS techniques; they �nd changed classes and af-

fected test classes based on a class-level dependency graph. Ekstazi

creates its dependency graph dynamically, but STARTS builds its

dependency graph statically. Figures 1 and 2 to illustrate their simi-

larities and di�erences. Figure 1 shows classes A, B, C in a synthetic

code under test (CUT), and test classes T1, T2, and T3, which check

665

https://github.com/EngineeringSoftware/FineRTS

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 2: Ekstazi and STARTS dependency graphs for Fig. 1.

1 public class Base64Test {

2 - private static final String [] BASE64_IMPOSSIBLE_CASES = {

3 + static final String [] BASE64_IMPOSSIBLE_CASES = {

4 "ZE==", "ZmC=", "Zm9vYE ==", "Zm9vYmC=", "AB", };

Figure 3: Changing a �eld’s access modi�er.

them. Two versions of the CUT are shown in A.m, which used to com-

pute di�erence (old version in red) but now computes division (new

version in green). Figure 2 shows the dependency graphs that Ek-

stazi and STARTS compute and the tests that they select. STARTS

is unsafe as it does not detect that T3 depends on the changed class

A because C.m uses re�ection to invoke A.m. STARTS can also be less

precise due to dynamic dispatch. Legunsen et al. [39, 60] found that

Ekstazi and STARTS have similar end-to-end times and re�ection

rarely makes STARTS unsafe in practice.

Some kinds of change that we use. We give several examples

of semantics-modifying changes for which Ekstazi and STARTS

re-run a�ected tests, and illustrate why it is safe to not re-run tests

that are only a�ected by such changes. The examples are simpli�ed

from changes in open-source projects; we show only relevant code.

The change in Figure 3 (from the Apache codec project [1], revi-

sion a6b2f1) removes the private access modi�er on a static �eld

and the project’s code still compiles. Ekstazi and STARTS re-run

Base64Test (it depends on itself), but doing so is needless: other

classes that access the �eld must use re�ection to do so, but re�ec-

tion is not used here. So, if the only changes are to access modi�ers,

code still compiles, and the project does not use re�ection to access

the changed �elds, then it is safe to not re-run tests that are only

a�ected by such changes.

The change in Figure 4 (from the Apache math project [3], revi-

sion 802058f) only deletes a throws clause. Ekstazi and STARTS

needlessly re-run 15 and 22 test classes. No class uses re�ection

to check method signatures, so tests that are only a�ected by this

change will behave the same before and after the change. It is safe

to not re-run such tests.

As a �nal example, in Figure 5 (from the Apache email project [2],

revision 78b9fdf) a new method is added. Ekstazi and STARTS

re-run eight and nine test classes unnecessarily, together with a test

class that was changed to depend on the new method. It is safe to

not re-run those eight and nine test classes: they do not transitively

depend on the new method.

Our goal is to study how to �nd these kinds of changes and

enhance analysis-based RTS to reason about them, to improve

RTS precision. Section 3 describes our process for �nding kinds of

changes that can be used, and Section 4 explains how we enhance

Ekstazi and STARTS to reason about these kinds of changes.

1 public class Percentile extends AbstractUnivariateStatistic ...

2 - public Percentile(final double quantile) throws

3 - MathIllegalArgumentException {

4 + public Percentile(final double quantile) {

Figure 4: Removing throws clause from method signature.

1 public abstract class Email

2 + public String getHeader(final String header)

3 + { return headers.get(header); }

Figure 5: Adding a method to a class.

3 MANUAL ANALYSIS OF CHANGES

We describe how we manually �nd and categorize the kinds of

changes that we use, and discuss how many of these kinds of

changes the RTS tools in this paper use. To re-emphasize, we do not

claim that the kinds of changes that we �nd are exhaustive. We only

show that it is feasible to �nd these kinds of changes and to improve

RTS precision (and speed up regression testing) by reasoning about

them. Future work could �nd more kinds of changes.

3.1 Manual Analysis Process

We manually analyze the nature of changes in 50 revisions per

project in 5 projects that are shown in Table 1 with the revisions

that we start from. We follow four steps:

(1) Choosing revisions. Per project, we randomly choose a revi-

sion from 2019 and 50 contiguous subsequent revisions. Our ratio-

nale for choosing these projects and revisions is in Section 5.1.

Table 1: Manually

inspected projects

Name SHA

beanutils 50a9457

codec 6cf3482

compress 80a388e

pool 41c4df1

fastjson 6b1ed5f

(2) Inspection. We manually inspect

all changes to Java �les in all 250 revi-

sions and record the changed program

elements (e.g., class, method) and our de-

cisions on if each change, by itself, is

safe for RTS to ignore. Three co-authors

performed the inspection; one of them

did initial inspection and then met with

the other two to discuss and �nd agreement over a period of 2

months. Some decisions are challenging and depend on context.

For example, if an instance method is added, whether tests that are

only a�ected by that change can be ignored depends on if a call to a

method with the same signature exists in the same class hierarchy

as the new method.

(3) Categorization. We organize our �ndings on the kinds of

changes, and aggregate the number of Java �les, revisions, and

projects related to each kind of code change.

(4) Checking RTS behavior. For each kind of change, we con�rm

that Ekstazi or STARTS selects at least one test, as a sanity check

on our decisions, and to provide initial data for evaluating our

enhanced RTS techniques.

3.2 Findings from Manual Analysis

In Table 2, we organize the 29 kinds of changes that we observe

during manual analysis into 13 �ndings that can be used to improve

RTS precision. We group kinds of changes that are similar or that

modify similar program elements, if they are likely to induce the

same test-selection behavior in our enhanced RTS techniques. ID

666

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Table 2: Findings from our formative study. Kind of Change: description; #F no. of source �les with each kind of code change;

#S: no. of revisions with each kind of change; #P: no. of inspected projects (out of 5) with each kind of change; Reasoning: why

the kind of change can be used to improve RTS precision.

ID Kind of Change #F #S #P Reasoning

F1 a Add class 133 39 5 Evaluated RTS techniques already handle these properly.

F2

a Add instance method 58 43 5

If no method with same signature is invoked on instances of the modi�ed class,

then tests that are only a�ected by such change can be safely skipped.

b Remove instance method 1 1 1

c Remove static method 1 1 1

d Add constructor 1 1 1

e Add static method 5 5 3

F3 a Sort members 42 5 3 This is a refactoring for which tests need not be re-run.

F4

a Add �eld 18 13 3

Tests that do not create instances of modi�ed class will not change behavior.b Remove �eld 3 3 2

c Add static initializer block 1 1 1

F5 a Change anonymous class to lambda 18 2 2 If these are the only changes, a�ected tests do not need to be rerun.

F6

a Rename class 9 3 2
Refactorings for which no tests do not need to be re-run. The compiler will

catch improper renamings.
b Rename instance method 4 4 3

c Rename static method 1 1 1

F7

a Import �eld type from di�erent package 1 1 1

A�ected tests can be re-run based on method-level reasoning.b Modify �eld initialization 9 5 3

c Import method from di�erent package 1 1 1

F8

a Add exception to method 6 4 3
If these are the only changes, a�ected tests do not need to be re-run if no test

dependency uses re�ection.
b Modify throws clause 1 1 1

c Modify method parameter 2 2 1

F9

a Modify class access modi�er 3 2 2
If these are the only changes, a�ected tests do not need to be re-run if no test

dependency uses re�ection.
b Make �eld �nal 2 2 1

c Modify �eld access modi�er 2 2 2

F10 a Modify a constructor 5 3 2 A�ected tests can be re-run based on method-level reasoning.

F11
a Specialize parameter type 3 2 2 No need to re-run tests if these are the only changes because bytecode of

a�ected (dependent) class has changed.b Add/Change base class to hierarchy 1 1 1

F12

There is no need to re-run tests if there is no re�ection (no runtime annotation).

A�ected tests can be re-run based on method-level reasoning if there is re�ection,

and annotation is method annotation, parameter annotation, or �eld annotation.

a Add runtime annotation 3 3 1

F13
a Replace parameter with lambda expression 1 1 1

A�ected tests can be re-run based on method-level reasoning.
b Compiler modi�es bytecode structure 12 6 3

in Table 2 is a label that we use to refer to each �nding; the caption

in that table describes other columns.

Here, we discuss the Kind of Change rows in Table 2 that are

not self-explanatory. Sorting �elds or methods (F3) is a refactoring;

RTS should not re-run tests. Reks [67] is the only refactoring-aware

RTS technique that we know, and it does not handle this refactoring.

Yet, F3 applies to many �les that we analyze.

We explain some other semantics-modifying kinds of changes.

(1) “Import method from di�erent package” (F7): the package from

which a method is imported has changed.

(2) “Import �eld type from di�erent package” (F7): the package

from which a �eld’s type is imported has changed.

(3) “Replace parameter with lambda expression” (F13): a lambda

expression is passed as a parameter to a changed API.

(4) “Compiler modi�es bytecode structure” (F13): compiler opti-

mizations change bytecode structure but not functionality, e.g.,

constant propagation or synthetic method introduction.

Table 2 is based only on the �le-level di�s that we analyze. If a �le

contains more than one kind of change in one di�, we increment

the count of each kind by one. The kinds of changes in Table 2 are

only from 95 unique revisions; the remaining (155) revisions merely

modify bytecode metadata, or re-format code. Also, the kinds of

changes that we identify are from 332 unique �les.

Table 3: Findings that RTS techniques support.

ID E
k
st
a
zi

S
T
A
R
T
S

R
e
k
s

★
F
in
e
E
k
st
a
zi

★
F
in
e
S
T
A
R
T
S

F1 † ✓ ✓ ✓ ✓ ✓

F2 † ✗ ✗ ✗ ✓ ✓

F3 ✗ ✗ ✗ ✓ ✓

F4 † ✗ ✗ ✗ ✓ ✓

F5 † ✗ ✗ ✗ ✗ ✗

F6 ✗ ✗ ✓ ✓ ✓

F7 † ✗ ✗ ✗ ✓ ✓

F8 † ✗ ✗ ✗ ✓ ✓

F9 † ✗ ✗ ✗ ✓ ✓

F10 † ✗ ✗ ✗ ✓ ✓

F11 † ✗ ✗ ✗ ✓ ✓

F12 † ✗ ✗ ✗ ✗ ✗

F13 † ✗ ✗ ✗ ✗ ✗

Findings that RTS techniques handle. Table 3 shows which

�ndings are supported by recent RTS techniques and the enhanced

techniques that we introduce in this paper. There,✓ or ✗means that

667

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 6: RTS work�ow.

a tool uses or does not use a �nding, respectively. Our enhanced

techniques are marked with ★. Of 13 �ndings, 11 are semantics-

modifying changes and they are marked with †. Table 3 also shows

that we do not yet use some �ndings from our manual analysis: F5,

F12, and F13. Non-trivial compiler support is needed to leverage

F5 and F13. F12 has no e�ect unless re�ection is used; we do not

implement it since re�ection is rare in our evaluated subjects.

4 TECHNIQUE

FineEkstazi and FineSTARTS use the kinds of changes in Section 3

by enhancing Ekstazi and STARTS, respectively, to not select tests

that are only a�ected by such changes. We show how the enhanced

techniques di�er from Ekstazi and STARTS (Section 4.1), and de-

scribe how the enhanced techniques work (Section 4.2).

4.1 Overview of Original vs. Enhanced RTS

Figure 6 shows the steps in Ekstazi and STARTS that we enhance

in FineEkstazi and FineSTARTS. The inputs are code (and tests) for

the current revision and metadata about test dependencies collected

from the previous revision. The outputs are a�ected test classes.

Ekstazi and STARTS metadata contains checksums per class and a

mapping between tests and classes they transitively depend on.

Ekstazi and STARTS work in four main steps. Step 1 loads

the old revision’s metadata from disk. Step 2 computes metadata

in the new revision; we will refer to this step as getNewMetaData.

Step 3 computes changed classes using the old and new metadata;

we will refer to this step as getModi�ed. Finally, step 4 computes

a�ected test classes as those for which at least one dependency

changed; we will refer to this step as getA�ectedTests.

FineEkstazi and FineSTARTS follow the same main steps as

Ekstazi and STARTS, but they di�er in two ways:

(1) Structurally. Ekstazi and STARTSwork only at the class-level

but FineEkstazi and FineSTARTS work across class, method,

and �eld levels of program granularity.

(2) Algorithmically. FineEkstazi and FineSTARTS have di�er-

ent getNewMetaData, getModi�ed, and getA�ectedTests steps

than Ekstazi and STARTS, to reason across granularity levels.

Here, we describe the metadata that FineEkstazi and FineSTARTS

collect, and how their getNewMetaData steps diverge from the ones

in Ekstazi and STARTS. We will highlight the other di�erences

between the original and enhanced RTS techniques in Section 4.2.

The data structures used by RTS techniques to store metadata is

important for their practicality and central to their algorithms.

Ekstazi and STARTS collect metadata for each test class C as

C → {�1 : chksum(�1),�2 : chksum(�2),�3 : chksum(�3)}. We

do not describe chksum(�8) in detail (see [26, 27, 40]): it computes

a checksum for each class �8 that C transitively depends on by

removing debug information and hashing the remaining bytecode.

FineEkstazi and FineSTARTS use amore complex data structure

to collect metadata so that they can capture relationships across

three di�erent levels of program granularity. Speci�cally, they col-

lect metadata for each test class C as C → {�1, �2, �3, . . .} where

each�8 is a map�8 → (58 , =8 ,<8) for each class�8 that C depends on.

Each �8 maps to three sets: (1) 58 = {(name9 , descriptor9 , value9) |

9 is a �eld in �8 }; (2) =8 = {: → chkSum(:) | : is a constructor

or static initializer in �8 }; and (3)<8 = {(name; , descriptor;) →

chkSum(;) | ; is a method in �8 }.

The chkSum that FineEkstazi and FineSTARTS use is the same

as in Ekstazi and STARTS, except that we apply it to parts of a class

instead of the whole class. Note that the way that the original and

enhanced algorithms use the metadata is also di�erent. Ekstazi

and STARTS compute a�ected test classes using the set of test

classes in the new revision and the metadata from the old revision.

The getModi�ed step in Ekstazi and STARTS considers a class as

changed if its checksum in the current and old revisions di�er.

The getModi�ed step in FineEkstazi and FineSTARTS is more

complicated because of the need to reason across granularity levels.

We describe getModi�ed as part of the algorithms in Section 4.2.

4.2 How FineEkstazi and FineSTARTSWork

Algorithm 1 shows the getA�ectedTests procedure that FineEkstazi

and FineSTARTS use. Instead of just checking if a class changes

(like Ekstazi and STARTS do), Algorithm 1 additionally checks

if and how the �elds, constructors (including static initializers),

and methods are modi�ed. Reasoning across multiple granularity

levels is needed to bene�t from the kinds of changes that we found

in Section 3 for safely speeding up RTS. HyRTS [73] also reasons

across class and method granularity, but our enhanced techniques

also reason about �elds. We experimentally compare FineEkstazi

and FineSTARTS with HyRTS in Section 5.

In Algorithm 1, getA�ectedTests iterates over each test class C in

the new revision and calls the getModi�ed on each class � that C

depends on. If C4BC is a newly added test class, on line 4, it is added

to the set of a�ected tests. If any C that depends on� is only a�ected

by changes that match our �ndings, getA�ectedTests will not return

C as an a�ected test class.

On line 13, if �’s metadata is unchanged, getModi�ed returns

false: no test that depends on � should be selected. If line 14 is

reached, then � changed. All that remains is to check whether

the change warrants re-running tests that depend on � . To do so,

getModi�ed calls the �dChanged, conChanged, and mtdChanged

procedures to check if the change matches our �ndings at the �eld,

constructor, and method levels respectively. If no change is detected,

line 21 returns false.

Procedure �dChanged checks if the set of �elds changed. If the

change is not just adding new �elds or deleting old �elds, then

line 24 will return true. In that case, all tests that depend on � will

be selected. This is an imprecise check of change to �elds because

we cannot distinguish between “renaming a �eld” and “deleting a

�eld with old name and adding a �eld with new name”. Renaming

�elds, which is a refactoring, is not ignored by our algorithm and

all tests that depend on � are selected. Access modi�ers are not

668

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Algorithm 1 getA�ectedTests for FineEkstazi and FineSTARTS

Inputs:) : the set of test classes in the new revision," : C → �

⊲ Section 4.1 describes �

Outputs:)0 ⊆) : a�ected test classes

1: procedure getA�ectedTests() ,")

2:)0 ← {}

3: for all test in) do

4: if test ∉ " then ⊲ test is a newly added test class

5:)0 ←)0 ∪ {test}; continue

6: for all� in" [test] .keys() do

7: if getModified(test,�,") then ⊲ test should be re-run

8:)0 ←)0 ∪ {test}; break

9: return)0

10:

11: procedure getModified(test,�,")

12: �new ← getNewMetaData(�)

13: if " [test] [�] = �new then return false ⊲ C did not change

14: else ⊲ did �elds, constructors, initializers, or methods in C change?

15: for all 5 in getFieldData(" [test] [�]) do

16: if fldChanged(" [test] [�] [5], �new [5]) then return true

17: for all = in getConstructorAndInitData(" [test] [�]) do

18: if conChanged(" [test] [�] [=], �new [=]) then return true

19: for all< in getMethodData(" [test] [�]) do

20: if mtdChanged(" [test] [�] [<], �new [<],�) then return true

21: return false

22:

23: procedure fldChanged(f, fnew)

24: return ¬(f \ fnew = ∅ ∨ fnew \ f = ∅) ⊲ true if �eld info changed

25:

26: procedure conChanged(n, nnew)

27: return n ≠ nnew ⊲ true if constructor or static initializer changed

28:

29: procedure mtdChanged(m,mnew,�)

30: for all sig in (m.keys() ∪mnew .keys()).copy() do

⊲ old and new signatures

31: if sig ∈ m and sig ∈ mnew then ⊲ unchanged signatures

32: if m[sig] = mnew [sig] then

⊲ same bytecode; ignore the change

33: mnew ← mnew \ { (sig,mnew [sig]) }; m← m \ { (sig,m[sig]) }

34: else return true ⊲ change: same signature, di�erent bytecode

35: else if mnew [sig] ∈ m.values() or m[sig] ∈ mnew .values() then

⊲ found old bytecode with new signature; ignore the change

36: m← m \ { (sig,mnew [sig]) }; mnew ← mnew \ { (sig,m[sig]) }

37: cHasHrchy← hasHrchy(�) or hadHrchy(�)

38: if !cHasHrchy and (m = ∅ or mnew
= ∅) then

⊲ one empty map: method added or deleted without a�ecting hierarchy

39: return false

40: else if � ∈) and mnew
= ∅ then

⊲ deleted a method from a test class

41: return false

42: return true

stored in 5 , so, if �eld access modi�ers are the only changed part

of � , fldChanged will return false.

If �elds in � did not change, conChanged returns true if a con-

structor or static initializer changed (line 27) so that all tests that

depend on � are selected. Constructors and static initializers are

typically much fewer than other kinds of methods. So checking

them �rst in conChanged makes getA�ectedTests faster.

Algorithm 2 Embedding mRTS in FineEkstazi

Inputs: Test class C , Ekstazi metadata .4:BC0I8 , mRTS metadata .<ACB

Outputs: true if the test should run; false otherwise

1: procedure Affected(C, .4:BC0I8, .<ACB)

2: 26← FineEkstazi.64C">38 5 843�;0BB4B (C, .4:BC0I8)

3: if 26 = ∅ then ⊲ Nothing is modi�ed

4: return 5 0;B4

5: <6←<')(.64C">38 5 843�;0BB4B (C, .<ACB)

6: if 26 ⊊<6 then ⊲ Re�ection or third-party class

7: return CAD4

8: for 2;I : 26 do

9: if<')(.8B">38 5 843 (C, 2;I, .<ACB) then

10: return CAD4

11: return 5 0;B4

Finally,mtdChanged performsmethod-level reasoning. The union

of (signature, bytecode) pairs for all methods in the old and new

revisions is iterated over to check for changes. If the pair for method

<8 is the same in the old and new revisions,<8 did not change and

mtdChanged proceeds with the next method,<8+1 (line 32). If the

signatures are the same but the bytecode di�er, then the method

changed and line 34 returns true. On line 35, if the signatures di�er

but the bytecode is the same,<8 was refactored—no test should be

selected—and mtdChanged proceeds with<8+1.

On line 38, if exactly one revision’s map is empty then a method

must have been added to or deleted from a class � . If � is not

part of a class hierarchy, and assuming the code compiles, then

no test that only depends on � should be selected, so mtdChanged

returns false. Line 40 deals with a special case: if a test method is

added/revised, it is considered as changed. Speedups result when

the only change is to delete a method in a test class—the remaining

tests cannot be a�ected by the deleted test if the code still compiles.

4.3 Embedding Method-Level Reasoning

Using several �ndings in Section 3, e.g., F10, to improve RTS pre-

cision requires method-level reasoning. So, we develop a static

method-level analysis (mRTS) that can be combined with class-

level analyses to improve their precision without making them less

safe. Algorithm 2 shows how we integrate mRTS analysis into Fi-

neEkstazi; its inputs are a test class, Ekstazimetadata (.ekstazi),

and mRTS metadata (.mrts). It outputs true if the test should be

selected and false otherwise. The analogous algorithm for embed-

ding mRTS into FineSTARTS works in a similar way.

Line 2 obtains a set of modi�ed classes (26) for test C (as identi�ed

by FineEkstazi). If the set is empty (line 3), false is returned—C

is not a�ected. If the set is not empty, mRTS is called to obtain

the set of modi�ed classes <6. If 26 ⊄ <6, then C is a�ected for

one of two reasons (1) a third-party class is modi�ed (which is not

tracked by mRTS), or (2) re�ection is used to access some classes

(which are not captured by mRTS). If 26 ⊂ <6, lines 8-10 iterate

over 26. For each � ∈ 26 line 9 invokes mRTS and returns true if

the mRTS �nds that C is a�ected. If mRTS analysis returns false

for all changed classes, then C is not a�ected (line 11).

669

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

5 EVALUATION

We evaluate the e�ectiveness of using our manual analysis �ndings

for improving RTS precision. We address these research questions:

• RQ1: How much does using the kinds of changes in our manual

analysis reduce the tests selected by Ekstazi and STARTS?

• RQ2: How much does using the kinds of changes in our manual

analysis reduce the end-to-end time of Ekstazi and STARTS?

• RQ3: What is the impact of using the kinds of changes in our

manual analysis on the safety of Ekstazi and STARTS?

• RQ4: To what extent do the �ndings from our manual analysis

re-occur in other projects and revisions that we did not analyze?

5.1 Experimental Setup

Evaluation subjects and revisions: Table 4 shows the 23 projects

that we evaluate (sorted by average test time), plus some character-

istics. Projects in our manual analysis are highlighted in gray. We

choose 18 of the projects in Table 4 because they are widely used

in RTS research, and prior work [39, 40, 60] showed that Ekstazi

and STARTS work well on many of their revisions. We omit four

projects from prior RTS research where average test time is less

than 10 seconds. We added another �ve projects that we are familiar

with and whose tests run longer than 10 seconds.

To �nd revisions, for each project, we run git diff on its revi-

sion history until we found 50 revisions where at least one Java �le

was modi�ed, and the project compiles. For projects in our manual

analysis, we used di�erent sets of 50 revisions in our evaluation.

Doing so reduces the chance that FineEkstazi and FineSTARTS

are tuned to the projects and versions from which we obtained our

�ndings. In a sense, we aim to not “over�t” the data.

Running experiments: We run RetestAll, Ekstazi, FineEkstazi� ,

FineEkstazi, STARTS, FineSTARTS� , FineSTARTS, and HyRTS

on each of the 50 revisions in the 23 projects. FineEkstazi� and

FineSTARTS� do not use mRTS.

We record the number of test classes selected and the end-to-end

RTS time. We run separate experiments to collect the analysis (A),

test execution (E), and collection (C) times. Measuring A, E, and C

times enables us to analyze the time costs of reasoning about these

kinds of changes during RTS. We run all experiments on a 3.20 GHz

Intel® Core™ machine with 64GB of RAM, running Ubuntu Linux

18.04 and Oracle Java 64-Bit Server version 1.8.0_241.

5.2 RQ1: Impact on RTS Selection Rates

We evaluate whether and by howmuch FineEkstazi� , FineEkstazi,

FineSTARTS� , and FineSTARTS select fewer tests than Ekstazi

and STARTS. We also compare with HyRTS. Figure 7 shows the

percentage of all tests selected by these techniques per project. Note

that HyRTS crashed on P13, P17, and P18; we mark them as N/A

and exclude them when comparing with other tools. Exact numbers

of tests are shown in the appendix in our data package [4].

Reasoning about �ndings from our manual analysis reduces

selection rates, compared with Ekstazi and STARTS, in every eval-

uation subject. Also, combining with method-level analysis (mRTS)

further reduced selection rates. Reasoning about those �ndings

without mRTS yields up to 46.5% (average: 17.8%) reduction in tests

Table 4: Projects in our study.

PID Name SHA KLOC #Test
Test

Time (s)

P1 imaging 70dd698 39.3 115.2 15.6

P2 lang b�7521 78.1 148.8 16.6

P3 collections 954c29f 63.7 170.4 17.6

P4 asterisk-Java aca95a7 60.1 46.0 20.1

P5 codec 35e9cf2 23.9 60.7 22.4

P6 con�guration 7e4b3fa 51.6 169.0 25.2

P7 compress 8a65cc9 50.2 142.6 28.9

P8 gerrit-events 6585777 8.1 24.0 30.1

P9 tabula-java 5f43a93 6.8 15.3 46.2

P10 fastjson 3ea25de 178.2 2297.0 47.8

P11 math d�1a09 149.7 467.6 50.3

P12 net 48e0662 28.3 44.0 62.3

P13 beanutils 85b8cc9 33.5 102.6 74.6

P14 rxjava-extras 62fb6a3 13.9 48.3 89.4

P15 dbcp 64a3b97 31.4 42.6 92.9

P16 io fc418a7 34.4 112.9 113.1

P17 b.HikariCP acc9ac7 11.9 39.3 157.2

P18 sdk-rest 1617bb1 65.2 24.0 169.8

P19 email-ext-plugin 8761c27 12.9 38.3 231.7

P20 pool be87cfc 14.6 22.0 333.8

P21 LogicNG 1bcead7 49.6 120.0 336.9

P22 �nmath-lib 03befd8 76.6 100.6 1185.9

P23 lmdbjava 680e0a8 5.6 14.3 1308.6

selected by Ekstazi, and up to 50.4% (average: 16.0%) reduction

for STARTS. If the code-change information and mRTS are used

together, these reductions grow to 80.8% (average: 41.7%) and 71.2%

(average: 31.8%), respectively. The selection rates of FineEkstazi

are on par with those of HyRTS: FineEkstazi selects fewer tests

in 7 of 20 projects (HyRTS fails on 3 projects). Both use dynamic

cross-granularity analysis; FineEkstazi uses �eld-, method-, and

class-level analyses, while HyRTS uses only method- and class-

level analyses. Future work could enhance HyRTS precision by

enhancing it to reason about our �ndings.

5.3 RQ2: Impact on End-to-End Testing Times

We measure how reduced selection rates (Section 5.2) translate

to reductions in end-to-end regression testing times. Recall that

end-to-end time with RTS includes analysis time (to reason about

changes and �nd a�ected tests), execution time (to run selected

tests), and collection time (to create metadata for performing RTS

on the next revision). Figure 8 shows the percentage of end-to-end

time of the RTS tools compared to RetestAll time. This percentage

can be greater than 100% if RTS incurs signi�cant overhead (analysis

and collection times). Exact end-to-end times, and breakdown of A,

E, and C times are in the appendix in our data package [4].

Compared to Ekstazi and STARTS, FineEkstazi and FineS-

TARTS reduce end-to-end times by up to 44.6% (average: 13.7%) and

42.9% (average: 12.5%), respectively, without mRTS. These reduc-

tions are up to 74.0% (average: 33.7%) and 68.0% (average: 28.7%),

respectively, when also using mRTS. But, reasoning about our �nd-

ings increases RTS analysis time, leading to an increase (rather

than a decrease) in the end-to-end times with FineEkstazi and

670

http://github.com/apache/commons-imaging
http://github.com/apache/commons-lang
http://github.com/apache/commons-collections
http://github.com/asterisk-java/asterisk-java
http://github.com/apache/commons-codec
http://github.com/apache/commons-configuration
http://github.com/apache/commons-compress
http://github.com/sonyxperiadev/gerrit-events
http://github.com/tabulapdf/tabula-java
http://github.com/alibaba/fastjson
http://github.com/apache/commons-math
http://github.com/apache/commons-net
http://github.com/apache/commons-beanutils
http://github.com/davidmoten/rxjava-extras
http://github.com/apache/commons-dbcp
http://github.com/apache/commons-io
http://github.com/brettwooldridge/HikariCP
http://github.com/bullhorn/sdk-rest
http://github.com/jenkinsci/email-ext-plugin
http://github.com/apache/commons-pool
http://github.com/logic-ng/LogicNG
http://github.com/finmath/finmath-lib
http://github.com/lmdbjava/lmdbjava

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23
0

20

40

60

80

Pe
rc

en
ta

ge
 o

f s
el

ec
te

d
te

st
 c

la
ss

es
 (%

)

Ekstazi
FineEkstaziF

FineEkstazi
STARTS
FineSTARTSF

FineSTARTS
HyRTS

Figure 7: Percentage of number of selected test classes of RTS tools over RetestAll.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23
0

25

50

75

100

125

150

175

200

Pe
rc

en
ta

ge
 o

f e
nd

 to
 e

nd
 ti

m
e

(%
)

Ekstazi
FineEkstaziF

FineEkstazi
STARTS
FineSTARTSF

FineSTARTS
HyRTS

Figure 8: Percentage of end-to-end time of RTS tools over RetestAll.

FineSTARTS in some cases. FineEkstazi is faster than HyRTS in

15 out of 20 projects. In a few cases, HyRTS takes longer time than

RetestAll (up to 199.4% of RetestAll time), showing that it can incur

high analysis and collection times to obtain its high precision.

Concerning the analysis, execution, and collection parts of end-

to-end time, we �nd that FineEkstazi and FineSTARTS trade a

higher analysis time for improved precision and reduced end-to-

end times. Without mRTS, the analyses times of FineEkstazi and

FineSTARTS are up to 28.5% (average: 14.1%) and 155.5% (average:

65.6%) higher than those of Ekstazi and STARTS, respectively. The

analyses times are higher when mRTS is also used: 87.8% (average:

25.9%) and 398.0% (average: 182.4%) for FineEkstazi and FineS-

TARTS, respectively. FineEkstazi and FineSTARTS are still able

to reduce end-to-end times because (1) the analyses times of Ek-

stazi and STARTS are very small both in absolute numbers and

as percentages of end-to-end times (on average, 0.9% for Ekstazi

and 0.1% for STARTS); and (2) despite the increase, the analyses

costs of FineEkstazi and FineSTARTS are still small portions of

end-to-end time (1.2% and 0.3%, respectively, on average).

5.4 RQ3: Impact on Safety

We use RTSCheck [75], the state-of-the-art technique for testing

RTS tools, to check FineEkstazi and FineSTARTS correctness and

Table 5: Violations that RTSCheck �nds in RTS tools.

Rule Ekstazi FineEkstazi STARTS FineSTARTS

R1 2 2 6 6

R2 0 0 0 0

R3 6624 4490 6655 4482

R4 0 0 0 0

R5 0 0 0 0

R6 0 0 1 1

R7 3 3 0 0

e�ciency. Inputs to RTSCheck are RTS tools, and the outputs are

each tool’s number of safety, precision, and generality violations

(a generality violation shows problems with integrating an RTS

tool). The AutoEP, DefectsEP and EvoEP components of RTSCheck

respectively use thousands of automatically generated evolving

programs, the Defects4J benchmarks [36], and GitHub revisions

to check RTS tools. RTSCheck uses seven rules: R1 and R2 yield

safety violations; R3, R4 and R5 yield precision violations; and R6

and R7 yield generality violations.

Table 5 shows the number of RTSCheck violations found in

Ekstazi, FineEkstazi, STARTS, and FineSTARTS. Our enhanced

techniques did not introduce new safety violations, despite the

reduced selection rates.

671

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 6: Applicabilty of manual analysis �ndings to other

projects and versions. #F : no. of source �les with each kind

of code change; #S: no. of revisions with each kind of change.

ID Kind of Change #F #S

F1 a Add class 4052 190

F2

a Add instance method 688 285
b Remove instance method 322 96
c Remove static method 55 32
d Add constructor 0 0
e Add static method 218 101

F4
a Add �eld 273 156
b Remove �eld 74 41
c Add static initialized block 0 0

F8

Change signature 125 57
a Add exception to method / /
b Modify throws clause / /
c Modify method parameter / /

F10 a Modify a constructor 749 233

F11
a Specialize parameter type 0 0
b Add/Modify base class to hierarchy 59 24

No change 3204 75
F3 a Sort members / /

F6
b Rename instance method / /
c Rename static method / /

F7
a Modify �eld holding version / /
b Change �eld initialization / /
c Modify utilized API interfaces / /

F9
a Modify class access modi�er / /
b Make �eld �nal / /
c Modify �eld access modi�er / /

Method 3801 540
Summary 13845 721

We manually checked these violations. R1 violations (selecting

fewer failing tests than RetestAll) are caused by (1) all tools not

detecting changes to non-Java �les; (2) STARTS missing static de-

pendencies between Suite (JUnit3 style) and tests. R3 violations

(selecting all tests in all versions) are because the programs gener-

ated by AutoEP have only a couple of tests, and safe RTS tools may

have to select all tests in some programs. Our techniques have less

R3 violations than existing RTS tools, which means that our tech-

niques improve the precision. The R6 violation (selecting a di�erent

number of tests than RetestAll in the �rst version) from STARTS

is caused by incompatibility with a third-party library version. R7

violations (selecting more failed tests than RetestAll) from Ekstazi

are caused by (1) unexpectedly triggering JUnit4 annotations with

JUnit3; (2) improper support for a third-party library’s annotations.

5.5 RQ4: Spread of Manual Analysis Findings

Table 6 shows the frequency of the kinds of change in our manual

analysis in revisions and projects that we did not analyze. Table 6

omits �ndings that we do not support (Section 3.2). The “Method”

row sums all kinds of changes that occurred at the method-level;

the “Summary” row sums all kinds of changes. We automate the cat-

egorization of these changes. We count the three kinds of changes

in F8 together as “Change signature”. Also, F3, F6, F7, F9 are hard

to automatically count separately, so we count them together as

shown in the “No change” row. They apply to the same branch

(“return false” on line 21 in Algorithm 1) after comparing methods,

�elds, and constructors, and we do not insert more branches to

distinguish these four �ndings to save analysis cost. For example,

F3 only changes the constant pool of the class, but does not change

the bytecode of methods, �elds, and constructors.

Many changes are at the method-level: 3801/13845 of �les and

540/721 of revisions. Our results (Section 3.2) show that reasoning

about our manual analysis �ndings complements combining class-

and method-level analyses. We show that (1) by itself, reasoning

about our �ndings improves RTS precision; and (2) using our �nd-

ings together with method-level reasoning further improves RTS

precision. Zhang [73] proposed using method-level analysis to im-

prove RTS precision. But, we are the �rst to �nd and reason about

semantics-modifying changes, and to use a two-tiered approach

based on both our �ndings and mixed-granularity reasoning.

6 DISCUSSION

We discuss the manual e�ort involved in our approach, experimen-

tal comparison with ML-based RTS, and future work.

On manual e�ort. The manual e�ort to �nd the kinds of changes

that we use can be non-trivial. But, we do not expect RTS tool

users to spend this manual e�ort. Rather, it is researchers and RTS

tool developers who may invest in �nding these kinds of changes.

Also, note that �nding the kinds of changes and enhancing RTS

techniques to leverage them is a one-time cost, unlike ML models

that may need to be trained per project and across revisions. The

manual e�ort that RTS tool developers invest is expected to result in

a pay-o�s for the tool users: increased productivity (shorter testing

time), reduced impact on climate (less energy expended on testing),

and higher-quality code (tests are run more frequently).

Comparison with ML-based RTS. This paper improves analysis-

based RTS precision. But readers may wonder if ML-based RTS

could perform better. Here, we give some arguments to the contrary,

and show some experimental results which support our arguments.

Breaking the “performance wall” that we discussed in Section 1

is driving unsafe ML-based RTS, which is also being adopted, e.g.,

at Facebook [45] and Gradle Enterprise [7]. These early ML-based

RTS adopters have access to a lot of data about code changes and

test failures for training models. But, ML is out of the reach for the

vast majority of individual open-source projects because (1) they

have limited histories that contain insu�cient usable data for train-

ing [72]; (2) their developers may not have ML expertise; (3) sub-

scriptions to ML-based RTS services like Gradle Enterprise may

cost more money than developers can a�ord (pricing for Gradle

Enterprise is not public at the time of writing [6]); and (4) there are

use cases in which safe RTS is critical, e.g., during debugging [29].

Next, we discuss our preliminary experiments to apply ML-based

RTS on open-source projects; the results support our arguments

about the lack of �t of ML-based RTS for these kinds of projects.

Models used. Trained models for ML-based RTS [7, 45] are not

available publicly. So, we use publicly-available models that we

previously trained for using ML-based RTS to improve analysis-

based RTS [72]. That training required historical test failures, which

are hard to �nd, so we used mutation testing to simulate failures.

Evaluation procedure. We use the 10 projects and revisions from

our prior evaluation. The IDs, names, and numbers of revisions of

the projects are in Table 7. We use the best model, FailBasic, the

best baseline, BM25, and the selection rates that found the most

failing tests. Overall, we use four models: FailBasic� , FailBasic(,

BM25� , and BM25((E: Ekstazi, S: STARTS).

672

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e
(%

)

FineEkstazi
FineSTARTS
HyRTS
Fail−BasicE

Fail−BasicS

BM25E

BM25S

Figure 9: Percentage of execution time of RTS tools and ML models over RetestAll.

Table 7: Percentage of tests missed by ML-based RTS models,

compared to intersection of tests selected by three analysis-

based RTS tools—Ekstazi, HyRTS, and STARTS—[%].

PID Name #sha FailBasic� FailBasic(BM25� BM25(

M1 Asterisk 4 73.3 62.3 46.4 40.2

M2 Bukkit 5 56.7 28.9 46.7 8.3

M3 Con�g 8 21.9 17.6 25.9 21.7

M4 Csv 18 15.8 12.0 8.0 5.6

M5 Lang 36 17.7 1.9 14.4 2.1

M6 Net 17 27.2 27.2 21.2 21.2

M7 Validator 15 24.0 24.0 35.7 35.2

M8 Gedcom4j 21 11.8 11.8 5.7 5.7

M9 Vectorz 20 1.8 1.8 1.9 1.9

M10 Zt-exec 14 15.0 15.0 7.1 7.1

- Avg - 26.5 20.3 21.3 14.9

Results. Figure 9 compares FineEkstazi, FineSTARTS, and HyRTS,

with the ML-based RTS models in terms of execution time (percent-

age compared to RetestAll time). We omit training costs from the

comparison. Training took 56 minutes per project, on average.

FailBasic� , the most precise ML-based RTS model, incurs more

test-execution time than FineEkstazi and HyRTS in most projects.

Like in our prior work. [72], we con�gure all four ML-based RTS

tools to select a �xed fraction of tests to improve their failing test

detection rate. More details are in our data package’s appendix [4].

To evaluate the safety of ML-based RTS models, we compare

their selection rates to the number of tests in the intersection of

those that FineEkstazi, FineSTARTS, and HyRTS select. The inter-

section of sets of selected tests from these tools is an approximation

of a “minimal” set of change-traversing tests. Table 7 shows the

percentages of change-traversing tests that are not selected by

each ML-based RTS model. The most precise ML-based RTS model,

FailBasic� , misses 26.5% of tests, on average. BM25(misses the

fewest tests (21.3% on average), but it is imprecise. In contrast, our

enhanced RTS techniques show better precision-safety trade-o�s.

For example, FineEkstazi is more precise than FailBasic� with no

new safety violations (see RTSCheck evaluation in Section 5.4).

Conclusion. The experiments that we discuss here provide initial

evidence that, today, analysis-based RTS performs better than ML-

based RTS on open-source projects. Note that many developers

may not have the expertise to train their own models, and using

models that are trained on one project may not perform well on

di�erent projects. Our re-use of ML models from prior work on RTS

performsworse than FineEkstazi and FineSTARTS on projects that

those models were trained on. Also, without ML, FineEkstazi and

FineSTARTS obtain test reductions comparable to those obtained

by using ML to improve the precision of analysis-based RTS [72].

Future work. The use of parallel computing in RTS for analyzing

the dependency graph, e.g., TLDR [71], can also speed up RTS and

it is orthogonal to our enhancements to RTS by leveraging the

kinds of changes. We plan to explore parallelizing the analyses in

FineEkstazi and FineSTARTS. Future work could also implement

�ndings that we did not yet implement, and investigate how to use

�ndings from our manual analysis to improve other recent RTS

techniques like HyRTS, EALRTS [44], etc.

7 THREATS TO VALIDITY

The �ndings on which we developed FineEkstazi and FineSTARTS

are based on manual inspection of changes in 250 revisions of 5

open-source projects. There are many other projects and kinds of

changes. It is important to perform a more extensive study in the

future. The results in this paper are limited to the projects and

revisions that we evaluate, and may not generalize to other projects.

But we show that even when only a few �ndings apply to a project,

the precision and end-to-end time improvements can be bene�cial.

Our process of coming up with the �ndings was manual. For

our proposed approach—improving RTS precision by reasoning

about manually identi�ed semantics-modifying changes—to be

more broadly applicable, we must develop automated techniques

for examining the kinds of changes that developers make and for

categorizing those into �ndings. We look forward to addressing

these and other limitations in the future.

8 RELATED WORK

Others have used manually identi�ed information to push the limits

on other program analysis. For example, Shi et al. [60] manually

identify re�ection-related methods and use them to make STARTS

safer. Also, Livshits et al. [43] allow users to manually provide hints

for resolving re�ective calls when using their static analysis. In the

rest of this section, we discuss other related work on: (1) improving

RTS precision, (2) leveraging code changes to improve program

analysis, and (3) studies of code changes.

673

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Improving RTS. As RTS grows in maturity and tool adoption,

researchers must now start paying more attention to RTS quality

improvement. We took a step in this direction with our RTSCheck

methodology for testing RTS tools [75], which we now use to test Fi-

neEkstazi and FineSTARTS. We developed Reks, which improves

RTS precision by not re-running tests a�ected by only semantics-

preserving changes, i.e., refactoring [67]. This paper generalizes

Reks and leverages semantics-modifying code changes that do not

require re-running all tests.

Other than Reks, other work on improving RTS precision did not

leverage kinds of code changes as we do. Zhang’s HyRTS [73] com-

bines method- and class-level analyses to improve RTS precision;

we compared FineEkstaziwith HyRTS in our evaluation. Palmskog

et al. [51] formally conducted a structural hierarchical impact anal-

ysis, including coarse-grained and �ne-grained components. We

adopted a similar three-level hierarchy including both content and

structure. Orso et al.’s DejaVOO [50] improves RTS precision with

a two-phase approach: computing a class �rewall [38] as an upper-

bound of the set of classes a�ected by changed code, then using an

edge-level control-�ow analysis to improve the precision of the �rst

phase. Our approach exhibits a similar re�nement process: we �rst

collect class-level RTS’s selected tests, and then re�ne the results

by integrating a method-level and �eld-level RTS, but we addition-

ally incorporate the knowledge of the nature of changes in our

techniques. TLDR [71] is a static method-level RTS tool and saves

end-to-end time by analyzing the method-level dependency graph

in parallel. TLDR is orthogonal to our work, and both approaches

can be combined in the future.

Recently, companies including Meta [45] and Gradle [7] report

using ML-based RTS. Researchers also studied applying ML models

for RTS on open-source projects [13, 20, 44, 52, 72]. We discussed

in Section 7 that ML-based RTS is not as e�ective for open-source

projects as our enhanced analysis-based RTS.

Leveraging code changes. Bell et al.’s DeFlaker [12] leveraged

code change semantics to detect �aky tests (failing tests due to

non-determinism) with lower cost. DeFlaker monitors the cover-

age of the latest code changes, using a hybrid of class-level and

statement-level dependency analysis, and marks as �aky newly

failing tests that do not execute any of the changes. DeFlaker can

potentially detect more �aky tests (in the same number of test runs)

by leveraging our �ndings.

Prior work on defect prediction has studied utilizing various

aspects of code change semantics such as code churn [47, 48], com-

plexity of changes [35], and �ne-grained code changes [24]. Giger

et al.’s work [24] empirically studied the correlation between bugs

and code change types and found that leveraging semantics of code

changes can improve defect prediction models. Our work is simi-

lar, but we focus on arbitrary code changes, and our goal was to

improve precision of RTS techniques.

Saha et al. [59] developed REPiR, an information-retrieval-based

test-case prioritization technique that leverages code-change infor-

mation. REPiR uses code changes as queries to search for relevant

tests to be prioritized, which can be more computationally e�cient

and performs better than techniques based on program analysis.

Binkley [15, 16] used slicing to �nd a reduced program on which

selected tests should be run and then selected only tests that exer-

cised some statements in the reduced program, which is di�erent

but related to RTS. They focus on using operation semantics to �nd

changed lines, but we focus on the semantics of code changes in

terms of transitive dependencies between changes and tests.

Studies of code changes. Prior work has studied alternative ways

to identify and categorize code changes in di�erent contexts. Fluri

et al. [23] extracted code changes as di�s of abstract syntax tree

and identi�ed popular code change types in open source projects.

Nguyen et al. [49] studied popular and repetitive code change types

on a large corpus of open source projects, in both within-project

and cross-project settings. Martinez and Monperrus [46] mined

popular code change patterns for program repair. In our work, we

focus on identifying and leveraging kinds of code changes that can

be used to improve RTS precision.

Ren et al. [54] developed Chianti that uses change impact anal-

ysis to determine a�ected tests whose execution behavior may

have been modi�ed by the change. Chianti de�ned a set of inter-

dependent atomic changes responsible for the modi�ed behavior

of test; in contrast, we de�ne a set of dependent atomic changes

that will not result in the change of test execution behavior. We

have applied our technique to improve both a dynamic and a static

analysis-based RTS tool.

9 CONCLUSION

We use knowledge distilled frommanual inspection of code changes

to improve the precision of analysis-based RTS techniques and

speed up regression testing, without using ML and without sac-

ri�cing safety. We report 13 �ndings from identifying changes,

mostly semantic-modifying ones, in revision histories of open-

source projects, and use them to enhance Ekstazi and STARTS.

We implement our enhanced RTS techniques, FineEkstazi and

FineSTARTS, and �nd that they are more precise, and that the en-

hancements generalize to projects that we did not manually analyze.

We believe that the work presented in this paper can be a �rst step

in a new line of work that uses semantics-modifying code changes

for speeding up RTS. Doing so could help to further increase the

adoption of RTS in industry.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Fred Schneider, August Shi, Aditya Thim-

maiah, Zhiqiang Zang and the anonymous reviewers for their com-

ments and feedback. Some of this research was sponsored by the

Army Research O�ce and was accomplished under Cooperative

Agreement NumberW911NF-19-2-0333. The views and conclusions

contained in this document are those of the authors and should not

be interpreted as representing the o�cial policies, either expressed

or implied, of the Army Research O�ce or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright

notation herein. This work is also partially supported by a Google

Faculty Research Award and the US National Science Foundation

under Grant Nos. CCF-1652517, CCF-2019277, CCF-2045596, CCF-

2107291, and CCF-2217696.

674

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

REFERENCES
[1] 2023. Apache Commons Codec. https://github.com/apache/commons-codec.
[2] 2023. Apache Commons Email. https://github.com/apache/commons-email.
[3] 2023. Apache Commons Math. https://github.com/apache/commons-math.
[4] 2023. Data package for this paper. https://github.com/EngineeringSoftware/

FineRTS.
[5] 2023. Ekstazi. http://ekstazi.org/.
[6] 2023. Gradle Enterprise Pricing. https://gradle.com/pricing/.
[7] 2023. Gradle predictive test selection. https://gradle.com/gradle-enterprise-

solutions/predictive-test-selection/.
[8] 2023. HyRTS. http://hyrts.org.
[9] 2023. STARTS—A tool for STAtic Regression Test Selection. https://github.com/

TestingResearchIllinois/starts.
[10] Mohammed Nayef Al-Refai. 2019. Towards Model-Based Regression Test Selection.

Ph. D. Dissertation. Colorado State University, USA.
[11] Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test

Selection. In International Symposium on Software Testing and Analysis. 134–142.
[12] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and

Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In Interna-
tional Conference on Software Engineering. 433–444.

[13] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In International Conference on
Software Engineering. 1–12.

[14] John Bible, Gregg Rothermel, and David S. Rosenblum. 2001. A Comparative
Study of Coarse- and Fine-Grained Safe Regression Test-Selection Techniques.
ACM Transactions on Software Engineering Methodology 10, 2 (2001), 149–183.

[15] David Binkley. 1997. Semantics Guided Regression Test Cost Reduction. IEEE
Transactions on Software Engineering 23, 8 (1997), 498–516.

[16] David W Binkley. 1992. Using Semantic Di�erencing to Reduce the Cost of
Regression Testing. In International Conference on Software Maintenance. 41–50.

[17] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica 35, 3 (2011),
289–321.

[18] Lionel Briand, Yvan Labiche, and Siyuan He. 2009. Automating Regression Test
Selection Based on UML Designs. Journal of Information and Software Technology
51, 1 (2009), 16–30.

[19] Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test Selection
for TizenRT. In International Symposium on Foundations of Software Engineering.
845–850.

[20] Daniel Elsner, FlorianHauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In International Symposium on Software Testing and
Analysis. 491–504.

[21] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14–30.

[22] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical Evaluations
of Regression Test Selection Techniques: A Systematic Review. In International
Symposium on Empirical Software Engineering and Measurement. 22–31.

[23] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
Distilling: Tree Di�erencing For Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725–743.

[24] Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing Fine-
Grained Source Code Changes and Code Churn for Bug Prediction. In Mining
Software Repositories. 83–92.

[25] Milos Gligoric. 2015. Regression Test Selection: Theory and Practice. Ph. D. Disser-
tation. University of Illinois at Urbana-Champaign, USA.

[26] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In International Conference on Software Engineering (Tool Demon-
strations Track). 713–716.

[27] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211–222.

[28] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko
Marinov. 2014. Regression Test Selection for Distributed Software Histories. In
International Conference on Computer Aided Veri�cation. 293–309.

[29] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In International Conference on Automated Software Engineering. 361–372.

[30] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. 1998. An Empirical Study of Regression Test Selection Techniques.
In International Conference on Software Engineering. 188–197.

[31] Pooja Gupta, Mark Ivey, and John Penix. 2011. Testing at the speed and scale
of Google. http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-
scale-of-google.html.

[32] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Eval-
uating Regression Test Selection Opportunities in a Very Large Open-Source
Ecosystem. In International Symposium on Software Reliability Engineering. 112–
122.

[33] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression Test Selection for Java Software. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 312–326.

[34] Jean Hartmann. 2012. 30 Years of Regression Testing: Past, Present and Future.
In Paci�c Northwest Software Quality Conference. 119–126.

[35] Ahmed E. Hassan. 2009. Predicting Faults using the Complexity of Code Changes.
In International Conference on Software Engineering. 78–88.

[36] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
International Symposium on Software Testing and Analysis. 437–440.

[37] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. 1994. Change
Impact Identi�cation in Object Oriented Software Maintenance. In International
Conference on Software Maintenance. 202–211.

[38] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51–65.

[39] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583–594.

[40] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In International Conference on Automated Software
Engineering. 949–954.

[41] Hareton KN Leung and Lee White. 1989. Insights into Regression Testing. In
International Conference on Software Maintenance. 60–69.

[42] Hareton KN Leung and Lee White. 1991. A Cost Model to Compare Regression
Test Strategies. In International Conference on Software Maintenance. 201–208.

[43] Benjamin Livshits, John Whaley, and Monica S Lam. 2005. Re�ection Analysis
for Java. In Asian Symposium on Programming Languages and Systems. 139–160.

[44] Erik Lundsten. 2019. EALRTS: A Predictive Regression Test Selection Tool. Master’s
thesis. KTH Royal Institute of Technology, Sweden.

[45] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In International Conference on Software Engineering
(Software Engineering in Practice). 91–100.

[46] Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models
for Reasoning on the Search Space of Automated Program Fixing. Empirical
Software Engineering Journal 20, 1 (2015), 176–205.

[47] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the E�ciency of Change Metrics and Static Code Attributes for
Defect Prediction. In International Conference on Software Engineering. 181–190.

[48] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Mea-
sures to Predict System Defect Density. In International Conference on Software
Engineering. 284–292.

[49] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Software
Evolution. In International Conference on Automated Software Engineering. 180–
190.

[50] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations of
Software Engineering. 241–251.

[51] Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2020. Practical Machine-
Checked Formalization of Change-Impact Analysis. In Tools and Algorithms
for the Construction and Analysis of Systems. 137–157.

[52] Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022.
Test Case Selection and Prioritization using Machine Learning: A Systematic
Literature Review. Empirical Software Engineering 27, 2 (2022), 1–43.

[53] Marek Par�anowicz. 2017. Open Clover. https://openclover.org.
[54] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, Ophelia Chesley, and Julian

Dolby. 2003. Chianti: A Prototype Change Impact Analysis Tool for Java. Technical
Report DCS-TR-533. Rutgers University CS Dept.

[55] Gregg Rothermel and Mary Jean Harrold. 1993. A Safe, E�cient Algorithm for
Regression Test Selection. In International Conference on Software Maintenance.
358–367.

[56] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. IEEE Transactions on Software Engineering 22, 8 (1996),
529–551.

[57] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, E�cient Regression Test
Selection Technique. ACM Transactions on Software Engineering Methodology 6,
2 (1997), 173–210.

[58] Gregg Rothermel and Mary Jean Harrold. 1998. Empirical Studies of a Safe
Regression Test Selection Technique. ACM Transactions on Software Engineering
Methodology 24, 6 (1998), 401–419.

675

https://github.com/apache/commons-codec
https://github.com/apache/commons-email
https://github.com/apache/commons-math
https://github.com/EngineeringSoftware/FineRTS
https://github.com/EngineeringSoftware/FineRTS
http://ekstazi.org/
https://gradle.com/pricing/
https://gradle.com/gradle-enterprise-solutions/predictive-test-selection/
https://gradle.com/gradle-enterprise-solutions/predictive-test-selection/
http://hyrts.org
https://github.com/TestingResearchIllinois/starts
https://github.com/TestingResearchIllinois/starts
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://openclover.org

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

[59] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In International Conference on Software Engineering. 268–279.

[60] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Re�ection-Aware Static Regression Test Selection. In Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 187:1–
187:29.

[61] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing
and Combining Test-Suite Reduction and Regression Test Selection. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 237–247.

[62] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In International
Symposium on Software Reliability Engineering. 228–238.

[63] Min Kyung Shin, Sudipto Ghosh, and Leo R Vijayasarathy. 2022. An Empirical
Comparison of Four Java-based Regression Test Selection Techniques. Journal of
Systems and Software 186 (2022), 111174.

[64] Mats Skoglund and Per Runeson. 2005. A Case Study of the Class Firewall Re-
gression Test Selection Technique on a Large Scale Distributed Software System.
In International Symposium on Empirical Software Engineering and Measurement.
74–83.

[65] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal on Software
Engineering and Knowledge Engineering 17, 3 (2007), 359–378.

[66] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-Level vs. Module-Level Regression Test Selection for .NET. In International

Symposium on Foundations of Software Engineering. 848–853.
[67] Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and

Milos Gligoric. 2018. Towards Refactoring-Aware Regression Test Selection. In
International Conference on Software Engineering. 233–244.

[68] David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection
Technique for Database Driven Applications. In International Conference on
Software Maintenance. 421–430.

[69] Guoqing Xu and Atanas Rountev. 2007. Regression Test Selection for AspectJ
Software. In International Conference on Software Engineering. 65–74.

[70] Nathan York. 2011. Tools for Continuous Integration at Google Scale. https:
//www.youtube.com/watch?v=b52aXZ2yi08.

[71] Maruf Hasan Zaber. 2021. Towards Parallelization of Regression Test Selection.
Master’s thesis. University of California, Irvine, USA.

[72] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.
Comparing and Combining Analysis-based and Learning-based Regression Test
Selection. In ICSE Workshop on Automation of Software Test.

[73] Lingming Zhang. 2018. Hybrid Regression Test Selection. In International Con-
ference on Software Engineering. 199–209.

[74] Jianjun Zhao, Tao Xie, and Nan Li. 2006. Towards Regression Test Selection for
AspectJ Programs. In Workshop on Testing Aspect-Oriented Programs. 21–26.

[75] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
Framework for Checking Regression Test Selection Tools. In International Con-
ference on Software Engineering. 430–441.

Received 2023-02-16; accepted 2023-05-03

676

https://www.youtube.com/watch?v=b52aXZ2yi08
https://www.youtube.com/watch?v=b52aXZ2yi08

	Abstract
	1 Introduction
	2 Background and Examples
	3 Manual Analysis of Changes
	3.1 Manual Analysis Process
	3.2 Findings from Manual Analysis

	4 Technique
	4.1 Overview of Original vs. Enhanced RTS
	4.2 How FineEkstazi and FineSTARTS Work
	4.3 Embedding Method-Level Reasoning

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Impact on RTS Selection Rates
	5.3 RQ2: Impact on End-to-End Testing Times
	5.4 RQ3: Impact on Safety
	5.5 RQ4: Spread of Manual Analysis Findings

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

