
ExLi: An Inline-Test Generation Tool for Java
Yu Liu★, Aditya Thimmaiah★, Owolabi Legunsen†, Milos Gligoric★

★The University of Texas at Austin; †Cornell University
★Austin, †Ithaca, USA

yuki.liu@utexas.edu,auditt@utexas.edu,legunsen@cornell.edu,gligoric@utexas.edu

ABSTRACT

We present ExLi, a tool for automatically generating inline tests,
which were recently proposed for statement-level code validation.
ExLi is the first tool to support retrofitting inline tests to exist-
ing codebases, towards increasing adoption of this type of tests.
ExLi first extracts inline tests from unit tests that validate methods
that enclose the target statement under test. Then, ExLi uses a
coverage-then-mutants based approach to minimize the set of ini-
tially generated inline tests, while preserving their fault-detection
capability. ExLi works for Java, and we use it to generate inline
tests for 645 target statements in 31 open-source projects. ExLi
reduces the initially generated 27,415 inline tests to 873. ExLi im-
proves the fault-detection capability of unit test suites from which
inline tests are generated: the final set of inline tests kills up to
24.4% more mutants on target statements than developer written
and automatically generated unit tests. ExLi is open sourced at
https://github.com/EngineeringSoftware/exli and a video demo is
available at https://youtu.be/qaEB4qDeds4.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Inline tests, unit tests, automatic test generation, test carving
ACM Reference Format:

Yu Liu★, Aditya Thimmaiah★, Owolabi Legunsen†, Milos Gligoric★. 2024.
ExLi: An Inline-Test Generation Tool for Java. In Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software
Engineering (FSE Companion ’24), July 15–19, 2024, Porto de Galinhas, Brazil.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3663529.3663817

1 INTRODUCTION

Inline tests were recently proposed for statement-level code (i.e.,
target statements) validation [13]. Inline tests complement tradi-
tional levels of test granularity, such as unit and integration tests,
and can help find single-statement bugs [10, 20] that are often
missed by unit tests [11]. Statements with harder-to-understand or
error-prone logic, such as regular expressions [16], or those that
are buried in complicated logic [21], can particularly benefit from
inline testing. Section 2 provides a detailed example.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663817

Two frameworks—iTest for Java [7] and pytest-inline for
Python [14]—were proposed to provide APIs for writing and exe-
cuting inline tests. Those APIs allow developers to specify an inline
test’s inputs, expected outputs, and oracles immediately after a tar-
get statement that is being tested. Then, these frameworks run each
inline test independently in a fresh environment. A prior user study
showed that inline tests are straightforward to learn [13]. Also,
pytest-inline has been integrated into pytest, the most popular
Python testing framework [6] and has now been downloaded 6,128
times since March 2023 [18]. Despite these advances, developers
must still write inline tests manually.

ExLi [12] was proposed to automatically generate inline tests.
ExLi can help to reduce developer time for manually writing inline
tests, retrofit inline tests to existing code, grow the dataset of avail-
able inline tests for research, and increase the chance for inline test
adoption in practice.

ExLi generates inline tests by extracting them from the execution
of unit tests for methods that enclose target statements. To do so,
ExLi follows a four-step process: (1) analyze the code under test to
find target statements, (2) instrument a target statement to collect
inputs and outputs during unit-test execution, (3) execute unit
tests that cover the target statement, and (4) generate inline tests
using the collected inputs as test inputs and collected output as
expected output in a test oracle. ExLi currently supports four kinds
of target statements: regular expressions, string manipulation, bit
manipulation, and stream operations, which were identified in prior
work [13] as being likely to benefit from inline testing. More kinds
of statements can be added in the future.

The extraction-only approach described above can generate an
excessive number of inline tests if unit tests execute a target state-
ment many times with varying inputs. To mitigate this excess, ExLi
also utilizes a coverage-then-mutants based reduction process to
reduce redundancy among extracted inline tests. (One inline test
is redundant with respect to another if it does not increase the
coverage [4] and mutation score [8] on the target statement.) ExLi
tracks the number of covered instructions on the target statement
and its context during unit test executions, recording values that
cover instructions that were not previously covered. Also, ExLimu-
tates the target statement and ensures that each generated inline
test kills a unique mutant. If no mutant is generated for a target
statement, then ExLi’s reduction is based only on coverage.
Improvements over previous prototype. This paper extends
ExLi from a prototype to a tool with a more user-friendly inter-
face, to facilitate easier adoption. New support that we add include
(1) generating inline tests in docker containers to isolate ExLi from
host’s file system and reduce flakiness, (2) allowing developers to
specify the target statement using its line number, and (3) exposing
an interface that allows users to supply their own algorithms for
target-statement identification.

https://github.com/EngineeringSoftware/exli
https://youtu.be/qaEB4qDeds4
https://doi.org/10.1145/3663529.3663817
https://doi.org/10.1145/3663529.3663817


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Liu, Aditya Thimmaiah, Owolabi Legunsen, and Milos Gligoric

1 class DFAssinaturaDigital{

2 void assinarDocumento(...) {

3 final PrivateKeyEntry keyEntry = getPrivateKeyEntry();

4 final String dn = ((X509Certificate) keyEntry.getCertificate()).

getSubjectX500Principal().getName();

5 this.getLogger().debug("DN: {}", dn);

6 final String cn = new LdapName(dn).getRdns().stream().filter(rdn ->
StringUtils.equalsIgnoreCase(rdn.getType(), "CN")).map(val ->
String.valueOf(val.getValue())).findFirst().orElse("");

7 itest().given(dn, "1.2.840=#1612646965676f,CN=NFe,OU=TI,O=NFe,
L=Florianopolis,ST=SC,C=BR").checkEq(cn, "NFe");

8 this.getLogger().debug("CN: {}", cn);

9 ...

10 }

11 }

Figure 1: An example target statement (line 6) and an ExLi-

generated inline test (line 7).

Evaluation. We evaluate ExLi on 645 target statements in 31 open-
source projects. We generate 873 inline tests in total. The final set
of generated inline tests kills up to 24.4% more mutants on target
statements than developer written and automatically generated
unit tests combined. That is, ExLi generates inline tests that can
improve the fault-detection capability of the test suites from which
they are extracted. We make ExLi open source and it is available at
https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example target statement (line 6) and an inline
test that ExLi generates (line 7). This example is simplified from
the open-source project, wmixvideo/nfe [24], a Brazilian electronic
invoices management system. Method assinarDocumento imple-
ments code for digitally signing XML documents. Line 6 extracts the
common name (CN) from a distinguished name (DN) in an X.509
certificate. If the distinguished name contains a CN component,
then line 6 extracts that component using Java streams. Otherwise,
line 6 assigns an empty string to the cn variable.

This target statement is worth testing because it utilizes complex
stream operations and string manipulation, which can be error-
prone or hard to understand [13]. However, writing a unit test to
check this target statement is challenging: doing so requires setting
up a certificate with a specific DN. Also, the local variable cn is not
directly accessible from outside the method, making it hard to write
assertions for unit tests. So, an inline test is useful in this case.

Inline tests have three parts. First, the “Declare” part—itest()—
marks a statement as an inline test. Second, the “Assign” part—
given(dn, "1.2.840=#1612646965676f, CN=NFe,OU=TI,O=NFe,
L=Florianopolis,ST=SC,C=BR")—assigns values to target state-
ments’ right-hand side variables. Third, the “Assert” part—checkEq(
cn, "NFe")—specifies a test oracle, including an expected output.
The inline test on line 7 assigns values to the variable dn and checks
whether the target statement returns the expected value of cn.

3 FRAMEWORK

Figure 2 shows ExLi’s procedure for generating inline tests. The
code under test (CUT) is a required input; optional inputs are (1) unit
tests and (2) file paths and line numbers of target statements. If unit
tests are not provided, ExLi will generate them using Randoop [17]
and EvoSuite [3]. If target statements are not provided, ExLi will

automatically find them based on a default set of previously defined
APIs (step 1 ): regular expressions, string manipulation, bit ma-
nipulation, and stream operations. The final outputs are the inline
tests after coverage-then-mutants based reduction, namely ExLi-
UM. There are two intermediate outputs: ExLi-Base—all unique
inline tests that are collected during unit-test execution (before
reduction)—and ExLi-Cov—inline tests that remain after reduction
based only on code coverage, but not mutation scores.

3.1 Generating Inline Tests

ExLi’s inline test generation phase consists of steps 1 , 2 , 3 ,
4 , 5 and 7 in Figure 2. In step 1 , TargetStmtFinder parses
the abstract syntax tree (AST) of the CUT and identifies target state-
ments. Users can extend TargetStmtFinder by overriding method
isTargetStmt to define their own rules for what target statements
to find. Then, in step 2 , VariablesFinder identifies the variables
used in each target statement, which will be the input or output
variables in the generated inline tests. After that, the Instrumenter
in step 3 adds code before each target statement to collect the val-
ues of input variables and after each target statement to collect the
values of output variables. Then, the Executor (step 4 ) runs unit
tests on the instrumented code, and the Collector stores (in mem-
ory) the unique sets of values observed during unit testing (step 5 ).
Using the collected sets of values, InlineTestConstructor (step
7 ) constructs inline tests. If an input or output value is primitive
or String typed, then it is used directly in an inline test. Otherwise,
the value is serialized using XStream [15] and the location of the
serialized object is used. A generated inline tests that is too long
(e.g., it is unreadable or it surpasses Java’s 65,536-character limit) is
not saved. The default maximum length for each inline test is 500
characters, and the maximum number of inline tests generated for
each target statement is 300, but users can adjust these parameters.

3.2 Reducing Inline Tests

ExLi’s reduction phase consists of steps 6 and 8 in Figure 2.
While executing unit tests, CovReducer (step 6 ) processes each
collected set of values and instruction-level coverage information.
Only sets of values that increase target coverage or context cov-
erage of a corresponding target statement are kept and sent to
InlineTestConstructor. The intuition is that if an inline test can
increase the instruction coverage of a target statement or state-
ments that follow it, that inline test is more likely to be able to
find bugs in the target statement. Target coverage is the instruc-
tion coverage of the target statement alone. Context coverage is the
instruction coverage of the context of the target statement. The
context of a target statement is defined as code between the target
statement and the end of its enclosing basic block. For example, the
context of the target statement in Figure 1 (line 6) is lines 8 to 10.

To collect target coverage and context coverage, Instrumenter
(step 3 ) first wraps the target statement in a try-catch block to en-
sure that the code coverage is collected, even if the target statement
or its context throws an exception. Then, Instrumenter modifies
the source code to collect coverage at three points. See collectCov
calls in Figure 3: (1) instruction-level coverage just before the tar-
get statement (line 6, cov1); (2) instruction-level coverage right

https://github.com/EngineeringSoftware/exli


ExLi: An Inline-Test Generation Tool for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

CUT

unit testsUnitTests
Generator

TargetStmt
Finder

1

target
stmts

Variables
Finder

2

Instrumenter

3

Executor

4

Collector

5

Cov
Reducer6

InlineTest
Constructor

7 ExLi-Base
inline tests

ExLi-Cov
inline tests

Mut
Reducer

8

ExLi-UM
inline tests

Figure 2: An overview of ExLi and its components.

1 void assinarDocumento(...) {

2 final PrivateKeyEntry keyEntry = getPrivateKeyEntry();

3 final String dn = ((X509Certificate) keyEntry.getCertificate()).

getSubjectX500Principal().getName();

4 this.getLogger().debug("DN: {}", dn);

5 try {

6 collectCov(); // cov1
7 collectInputs(dn);

8 final String cn = new LdapName(dn).getRdns().stream()

9 .filter(rdn -> StringUtils.equalsIgnoreCase(rdn.getType(),

"CN"))

10 .map(val -> String.valueOf(val.getValue()))

11 .findFirst()

12 .orElse(""); // target statement
13 collectOutputs(cn);

14 collectCov(); // cov2
15 ... // source code after target statement
16 } finally {

17 collectCov(); }} // cov3

Figure 3: Example: how ExLi instruments code in Figure 1.

after the target statement (line 14, cov2); and (3) instruction-level
coverage inside the newly added finally block (line 17, cov3).

Step 6 can efficiently reduce the number of inline tests. How-
ever, it is possible that it misses some inline tests that could find
bugs because it only considers one level of context. For example,
CovReducer only considers, as context, instructions after a tar-
get statement that is in a loop, but that are within the loop body.
However, the loop condition could affect code outside the loop. To
address this limitation, MutReducer (step 8 ) adds back inline tests
collected before reduction if the mutants are not killed by inline
tests that remain after CovReducer. Subsequently, MutReducer ap-
plies an algorithm to further reduce the number of inline tests, based
on mutation scores; it first runs mutation analysis on the CUT and
maps killed mutants to each inline test. Here, ExLi supports gen-
erating mutants with universalmutator [5] or Major [23] because
they are source code level mutators, which can be easily applied to
target statements. Then, MutReducer uses one of the four test-suite
reduction algorithms [25] implemented by an existing script [22]
(the default is Greedy). If a target statement has no mutant, then
MutReducer skips it and keeps all inline tests that remained for
that statement after applying CovReducer. Finally, ExLi outputs
inline tests after coverage-then-mutants based reduction.

4 INSTALLATION AND USAGE

Installation. We provide an ExLi docker image, which can be
installed and run using the following commands:

~/exli$ docker build -t exli .

~/exli$ docker run -it exli /bin/bash

We suggest using Conda [2] to manage packages for ExLi’s
Python scripts. In the docker container, users can install the Python
dependencies by running the following commands:

~$ cd exli/python && bash prepare -conda -env.sh

~/exli/python$ conda activate exli

Usage. To run ExLi for test generation, a user needs to provide the
following parameters: (1) the project name (format: {org}_{repo}),
(2) the commit SHA, (3) whether to run Randoop generated tests,
(4) the time limit (in seconds) per class for Randoop test generation,
(5) whether to run EvoSuite generated tests, (6) the time limit (in
seconds) per class for EvoSuite test generation, (7) the seed(s) for
Randoop and EvoSuite test generation, and (8) the path to the log
file. All parameters other than project name and commit SHA are
optional. Here’s an example command:

~/exli/python$ python -m exli.main run \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

To execute generated inline tests using iTest [7], users provide
the following parameters: (1) the project name (format: {org}_{repo}),
(2) the commit SHA, (3) the path to the directory with Java files
containing inline tests, (4) the path to the directory of parsed inline
tests (in JUnit format), (5) the path to the inline tests report, (6) the
path to the cached objects, (7) the path to the file that contains
the project’s dependencies, and (8) the path to the log file. All
parameters other than project name and commit SHA are optional.
Here’s an example command:

~/exli/python$ python -m exli.main run_inline_tests \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

To reduce inline tests with MutReducer, users can run the follow-
ing commands, which (1) generate mutants with universalmutator,
(2) execute the inline tests on the mutated code, (3) collect a map-
ping from inline tests to killed mutants, (4) add back inline tests that
can kill more mutants than CovReducer-reduced tests, (5) perform
inline test reduction using the Greedy algorithm, and (6) add back
inline tests whose target statements have no (killed) mutants:

~/exli/python$ python -m exli.main generate_mutants \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

~/exli/python$ python -m exli.eval run_tests_with_mutants \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

~/exli/python$ python -m exli.eval get_r2_tests \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5\

--mutator=universalmutator --algo=greedy \

--output_path=${HOME}/exli/results/r2/Bernardo -MG_velocity -

config -tool -26226 f5.txt

5 EVALUATION

We evaluate ExLi on 31 open-source projects, using the same setup
as in previous work [12]. Unlike that work, we exclude 147 target
statements that are in automatically generated code (i.e., parser
code produced by JavaCC during build time in jkuhnert/ognl [9]).



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Liu, Aditya Thimmaiah, Owolabi Legunsen, and Milos Gligoric

Fou
nd

Cov
ere

d b
y

Unit
 Te

sts Dev

Ra
nd

oo
p

Ev
oS

uit
e

With
 ≥1

Inl
ine

 Te
sts

0

200

400

600

800

1000
#t

ar
ge

t s
ta

te
m

en
ts

regex
string
bit
stream

Figure 4: No. of target statements that we find for four kinds

of APIs, covered by (all, developer written, Randoop, and

EvoSuite) unit tests, and where ExLi generates inline tests.

Values ExLi-Base ExLi-Cov ExLi-UM
100

101

102

103

104

Figure 5: Distribution of inline tests per target statement.

Target statements. Figure 4 shows the distribution of target state-
ments in the 31 projects. ExLi initially identifies 957 target state-
ments: 84 with regular expressions, 742 with string manipulation,
97 with bit manipulation, and 34 with stream operations.

Out of these, 691 target statements are covered by at least one
unit test: 412 by at least one developer written unit test, 456 by
at least one Randoop-generated unit test, and 532 by at least one
EvoSuite-generated unit test. After removing failed inline tests
and their corresponding target statements, ExLi generates passing
inline tests for 645 target statements: 81 in regular expression, 458
in string manipulation, 88 in bit manipulation, and 18 in stream
operations. We use this set in subsequent experiments.
Inline tests. Figure 5 shows the distribution of the number of inline
tests per target statement. Additionally, we include the number
of unique sets of variable values collected during execution of
unit tests (denoted as Values), to show the number of inline tests
that ExLi would generate without setting the 300 upper limit. The
average number of inline tests per target statement for Values,
ExLi-Base, ExLi-Cov, and ExLi-UM are 117.5, 42.5, 1.7 and 1.4,
respectively. The median values for Values, ExLi-Base, ExLi-Cov
and ExLi-UM are 32.0, 29.0, 1.0, and 1.0.

To evaluate the effectiveness of ExLi’s reduction, we consider
ExLi-Base as the baseline, which generates 27,415 inline tests. ExLi’s
coverage-based reduction, referred to as ExLi-Cov, reduces the
number of inline tests to 1,109, achieving a reduction rate of 96.0%.
Subsequently, after performing mutation-based reduction using
universalmutator, i.e., ExLi-UM, the number of inline tests is further
reduced to 873. This results in a cumulative reduction rate of 96.8%,
highlighting the efficiency of ExLi’s reduction strategies.

179

61

304

0

0

464

1666

ExLi-Cov
ExLi-UM
Unit

(a) All unit tests

72

8

0

11

2

8

78

525

190

126
158

586

341

134

435

ExLi-UM
Dev
Randoop
EvoSuite

(b) Separate unit tests

Figure 6: Sets of mutants killed by inline tests and unit tests.

Mutation analysis. Mutation testing is widely used to assess the
quality of test suites [1, 19]. We performmutation analysis using the
mutants on the target statements generated by universalmutator.

Figure 6a shows a Venn diagram illustrating the overlap among
the sets of mutants killed by all unit tests and inline tests from ExLi-
Cov, and ExLi-UM (which is the same as ExLi-Base). All inline tests
and unit tests kill 2,674 mutants in total. Figure 6b separates all
unit tests into developer written, Randoop generated and EvoSuite
generated unit tests and shows their killed mutants. 1,970 mutants
are killed by both inline tests and unit tests. The number of mutants
killed by inline tests but not by unit tests is 525, and the number of
mutants killed by unit tests but not by inline tests is 179. This result
shows that inline tests generated by ExLi can improve the fault-
detection capability of test suites from which they are extracted.
Performance. Generating inline tests with ExLi-UM takes 1,589.2s
on average across projects. This average does not include the per-
project times to generate unit tests with Randoop (5,547.7s) and
EvoSuite (1,221.2s), and to generate mutants with universalmutator
(460.6s); these can be run offline. Other relevant times are: 161.0s
to find target statements and instrument code, 1,719.9s to run unit
tests, run coverage-based reduction, and generate inline tests, and
968.9s for mutation-based reduction.

6 CONCLUSION

We presented ExLi, a tool for automatic generation of inline tests.
The idea behind ExLi is to (1) extract the input values and expected
outputs for inline tests while running unit tests for methods that
contain the target statement being tested, and (2) reduce redun-
dancy among extracted inline tests while preserving fault-detection
capability. We add several new features to make a previous proto-
type more usable and extensible, and to make the inline test gener-
ation process more stable. Our evaluation shows that ExLi gener-
ates inline tests for many target statements in several open-source
projects and the resulting inline tests improve the fault-detection
capability of existing test suites. ExLi is open sourced.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Pengyu Nie, Fred B. Schneider, August
Shi, Ayaka Yorihiro, Zhiqiang Zang, and Jiyang Zhang for their
comments and feedback. This work is partially supported by an
Intel Rising Star Faculty Award, a Google Cyber NYC Institutional
Research Award, and the US National Science Foundation under
Grant Nos. CCF-2045596, CCF-2107291, CCF-2217696, CCF-2313027,
and CCF-2319473.



ExLi: An Inline-Test Generation Tool for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES

[1] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,
Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In Automated
Software Engineering. 237–249. https://doi.org/10.1145/3324884.3416667

[2] Conda 2024. Conda. https://docs.conda.io/projects/conda/en/stable.
[3] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: Automatic test suite generation

for object-oriented software. In International Symposium on the Foundations of
Software Engineering. 416–419. https://doi.org/10.1145/2025113.2025179

[4] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. 2013. Comparing non-adequate test suites using
coverage criteria. In International Symposium on Software Testing and Analysis.
302–313. https://doi.org/10.1145/2483760.2483769

[5] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An extensible, regular-expression-based tool for multi-language mutant
generation. In International Conference on Software Engineering, Demonstrations.
25–28. https://doi.org/10.1145/3183440.3183485

[6] Inline Testing Team 2023. pytest-inline on PyPi. https://pypi.org/project/pytest-
inline.

[7] ITest Team. 2023. ITest. https://github.com/EngineeringSoftware/inlinetest/tree/
main/java.

[8] Dennis Jeffrey and Neelam Gupta. 2007. Improving fault detection capability
by selectively retaining test cases during test suite reduction. Transactions on
Software Engineering 33, 2 (2007), 108–123. https://doi.org/10.1109/TSE.2007.18

[9] jkuhnert Team. 2024. Jkuhnert Ognl. https://github.com/jkuhnert/ognl.
[10] Rafael-Michael Karampatsis and Charles Sutton. 2020. How often do single-

statement bugs occur? The ManySStuBs4J dataset. In International Working
Conference on Mining Software Repositories. 573–577. https://doi.org/10.1145/
3379597.3387491

[11] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias Costa, and Emad Shihab.
2021. How effective is continuous integration in indicating single-statement
bugs?. In International Working Conference on Mining Software Repositories. 500–
504. https://doi.org/10.1109/MSR52588.2021.00062

[12] Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen. 2023.
Extracting Inline Tests from Unit Tests. In International Symposium on Software
Testing and Analysis. 1458–1470. https://doi.org/10.1145/3597926.3598149

[13] Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. 2022. Inline tests. In
Automated Software Engineering. 1–13. https://doi.org/10.1145/3551349.3556952

[14] Yu Liu, Zachary Thurston, Alan Han, Pengyu Nie, Milos Gligoric, and Owolabi
Legunsen. 2023. pytest-inline: An inline testing tool for Python. In International
Conference on Software Engineering, Demonstrations. 161–164. https://doi.org/10.
1109/ICSE-Companion58688.2023.00046

[15] LogstashGelf 2022. XStream developer. https://x-stream.github.io/index.html.
[16] Louis G Michael, James Donohue, James C Davis, Dongyoon Lee, and Francisco

Servant. 2019. Regexes are hard: Decision-making, difficulties, and risks in
programming regular expressions. In ASE. IEEE, 415–426. https://doi.org/10.
1109/ASE.2019.00047

[17] Carlos Pacheco and Michael D Ernst. 2007. Randoop: Feedback-directed random
testing for Java. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 815–816. https://doi.org/10.1145/1297846.
1297902

[18] PePy Team. 2024. pytest-inline downloads. https://pepy.tech/project/pytest-
inline.

[19] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Prac-
tical mutation testing at scale: A view from Google. Transactions on Software
Engineering 48, 10 (2021), 3900–3912. https://doi.org/10.1109/TSE.2021.3107634

[20] Cedric Richter and Heike Wehrheim. 2022. TSSB-3M: Mining single statement
bugs at massive scale. In International Working Conference on Mining Software
Repositories. 418–422. https://doi.org/10.1145/3524842.3528505

[21] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges (t). In Automated Software
Engineering. 201–211. https://doi.org/10.1109/ASE.2015.86

[22] August Shi. 2023. Collection of scripts to conduct test-suite reduction. https:
//github.com/august782/testsuite-reduction.

[23] Major Team. 2023. Major mutation framework. https://mutation-testing.org.
[24] Wmixvideo Team. 2024. Wmixvideo Nfe. https://github.com/wmixvideo/nfe.
[25] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: A survey. Software Testing, Verification and Reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stv.430

Received 2024-01-29; accepted 2024-04-15

https://doi.org/10.1145/3324884.3416667
https://docs.conda.io/projects/conda/en/stable
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/3183440.3183485
https://pypi.org/project/pytest-inline
https://pypi.org/project/pytest-inline
https://github.com/EngineeringSoftware/inlinetest/tree/main/java
https://github.com/EngineeringSoftware/inlinetest/tree/main/java
https://doi.org/10.1109/TSE.2007.18
https://github.com/jkuhnert/ognl
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1109/MSR52588.2021.00062
https://doi.org/10.1145/3597926.3598149
https://doi.org/10.1145/3551349.3556952
https://doi.org/10.1109/ICSE-Companion58688.2023.00046
https://doi.org/10.1109/ICSE-Companion58688.2023.00046
https://x-stream.github.io/index.html
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://pepy.tech/project/pytest-inline
https://pepy.tech/project/pytest-inline
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1145/3524842.3528505
https://doi.org/10.1109/ASE.2015.86
https://github.com/august782/testsuite-reduction
https://github.com/august782/testsuite-reduction
https://mutation-testing.org
https://github.com/wmixvideo/nfe
https://doi.org/10.1002/stv.430

	Abstract
	1 Introduction
	2 Example
	3 Framework
	3.1 Generating Inline Tests
	3.2 Reducing Inline Tests

	4 Installation and Usage
	5 Evaluation
	6 Conclusion
	References

