
CrawLabel: Computing Natural-Language Labels for
UI Test Cases

Yu Liu∗
yuki.liu@utexas.edu

University of Texas at Austin
Austin, TX, USA

Rahulkrishna Yandrapally
rahulyk@ece.ubc.ca

University of British Columbia
Vancouver, BC, Canada

Anup K. Kalia†
akalia@dataminr.com

Dataminr, Inc
NY, USA

Saurabh Sinha
sinhas@us.ibm.com

IBM Research
Yorktown Heights, NY, USA

Rachel Tzoref-Brill
rachelt@il.ibm.com

IBM Research
Haifa, Israel

Ali Mesbah
amesbah@ece.ubc.ca

University of British Columbia
Vancouver, BC, Canada

ABSTRACT

End-to-end test cases that exercise the application under test via
its user interface (UI) are known to be hard for developers to read
and understand; consequently, diagnosing failures in these tests
and maintaining them can be tedious. Techniques for computing
natural-language descriptions of test cases can help increase test
readability. However, so far, such techniques have been developed
for unit test cases; they are not applicable to end-to-end test cases.

In this paper, we focus on the problem of computing natural-
language labels for the steps of end-to-end UI test cases for web ap-
plications. We present two techniques that apply natural-language
processing to information available in the browser document object
model (DOM). The first technique is an instance of a supervised
approach in which labeling-relevant DOM attributes are ranked via
manual analysis and fed into label computation. However, super-
vised approach requires a training dataset. Sowe propose the second
technique, which is unsupervised: it leverages probabilistic context-
free grammar learning to compute dominant DOM attributes au-
tomatically. We implemented these techniques, along with two
simpler baseline techniques, in a tool called CrawLabel (available
as a plugin to Crawljax, a state-of-the-art UI test-generation tool for
web applications) and evaluated their effectiveness on open-source
web applications. Our results indicate that the supervised approach
can achieve precision, recall, and F1-score of 83.38, 60.64, and 66.40,
respectively. The unsupervised approach, although less effective, is
competitive, achieving scores of 72.37, 58.12, and 59.77. We high-
light key results and discuss the implications of our findings.

1 INTRODUCTION

End-to-end tests play an important role in functional testing in prac-
tice. The goal of end-to-end testing is to exercise the Application

* Author was an intern at IBM Research at the time of this work.
† Author was with IBM Research when this work was done.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AST ’22, May 17–18, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9286-0/22/05. . . $15.00
https://doi.org/10.1145/3524481.3527229

Listing 1: End-to-end test (without labels)

1 def Test1 ():
2 driver.loadURL("Base_URL")
3 driver.findElement("//*[@id='Content ']/p[1]/a").click()
4 driver.findElement
5 ("//*[@id='SearchContent ']/form/input [1]").enter("Bulldog)
6 driver.findElement
7 ("//*[@id='SearchContent ']/form/input [2]").click ()
8 driver.findElement("//*[@id='BackLink ']/a").click()
9 driver.findElement("//*[@id='SidebarContent ']/a[1]").click()

Under Test (AUT) through its user interface (UI) in a manner similar
to how an end-user would navigate the application. Because of their
focus on end-user perspective and coverage of end-to-end applica-
tion flows, these tests are also useful for acceptance testing. Such
tests can be written manually, created using test automation tools
such as record-replay [1, 15], or generated through automatic/semi-
automatic test generation techniques (e.g., [6, 19, 25, 32, 33, 46]).

Regardless of how they are created, end-to-end tests are noto-
riously hard to maintain as they are fragile [17, 20] and can break
in response to minor changes to the UI. Such test breakages re-
quire costly human effort in practice despite research efforts to
design techniques that automatically make tests more resilient to
changes [25, 31, 49] and repair broken tests [12, 23, 45]. A key
challenge for a human tester to fix breakages is the difficulty in
understanding the tests. Existing research efforts to improve main-
tainability are limited to creation of page objects [44], which helps
reduce duplication in human maintenance effort but does not ad-
dress test comprehension directly.

Test comprehension in general is a known challenge [16] that
hinders adoption of automated testing techniques as it makes test
maintenance a challenging task for developers. Several techniques
have been developed to facilitate test comprehension such as sum-
marizing or documenting test cases [26] and creating meaningful
test case names [13]. However, existing techniques focus on unit
test cases; they are not applicable to end-to-end tests, which is the
focus of this work.

Unlike a unit test, which targets at program’s methods or func-
tions, an end-to-end test consists of actions (e.g., clicks) performed
on the UI of the program, often via APIs of a testing framework
such as Selenium [42]. These interactions with the UI can make
such tests particularly hard to understand.

To illustrate this, consider the end-to-end test shown in Listing 1,
implemented using the Selenium WebDriver API. After loading
the AUT’s URL in line 2, each test step locates a UI element using
an XPath-based locator and clicks the identified element. Without

https://doi.org/10.1145/3524481.3527229

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

Listing 2: End-to-end test (with labels)

1 def Test1 ():
2 driver.loadURL("Base_URL")
3 # enter the store
4 driver.findElement("//*[@id='Content ']/p[1]/a").click()
5 # search product
6 driver.findElement
7 ("//*[@id='SearchContent ']/form/input [1]").enter("Bulldog)
8 driver.findElement
9 ("//*[@id='SearchContent ']/form/input [2]").click()
10 # return to main menu
11 driver.findElement("//*[@id='BackLink ']/a").click()
12 # view category
13 driver.findElement("//*[@id='SidebarContent ']/a[1]").click()

suitable comments that describe the actions performed by the test
steps, such a test case can be hard to understand; the user essentially
has to identify the target UI element for each action from the XPath
locator of the element (e.g., using browser developer tools) and
piece together the exercised UI flow. This is a cumbersome manual
task that can be especially tedious for tests that navigate long and
complex navigational flows. For test steps with broken locators, this
manual task becomes even harder as the target element cannot be
manually identified even using browser tools. Tests that lack proper
comments (or obsolete comments) pose comprehension challenges.

The goal of our work is to automatically generate labels, such
as the labels shown in Listing 2, for end-to-end tests. The idea is
to make such tests more comprehensible for developers by adding
descriptive information for each test step. In this work, we focus
on automatically generated tests, but our technique can also be
applied to tests created by record–replay tools or written manually.

Unit-level test-summarization techniques [26, 38] attempt to gen-
erate natural-language descriptions of test steps by analyzing the
called application methods (their names, descriptions, and code).
Such approaches are not applicable to end-to-end tests. Summa-
rizing the steps of a UI test must be done in terms of the visual
actions performed by the steps on the application UI. For instance,
for web applications this involves analyzing the browser document
object model (DOM) and computing natural-language descriptions
of events triggered on the DOM elements by the test steps.

Overall, our approach applies natural-language processing (NLP)
to the information available in the browser DOM and computes
natural-language labels that describe the actions performed in UI
test steps. It takes as input an end-to-end test represented as a
path in which nodes represent DOM states and edges represent
events that cause transitions from the source DOM state to the
target DOM state. It produces as output a set of natural-language
labels, where each label is associated with an edge of the input
path. To compute the label for an edge, the technique analyzes
DOM elements, attributes and their contents using standard NLP
methods, such as tokenization, lemmatization, and removal of non-
English words, followed by identification of keywords.

A key challenge in extracting a meaningful label for a test action
concerns the importance assigned to keywords extracted fromDOM
analysis. Inclusion of keywords unrelated to the semantics of the
test action can generate labels that are meaningless and confusing
for developers, impacting the end goal of making UI tests compre-
hensible. To tackle this challenge, we present two techniques for
identifying the DOM attributes on which NLP should be applied
for label computation.

The first technique is a supervised approach inwhich the labeling-
relevant DOM attributes are manually identified and ranked on a set

of web applications (the training set), and then used for computing
labels. An important limitation of the supervised approach is that it
may not generalize to novel web frameworks. Thus, we present the
second technique, which is unsupervised. The approach computes
the probability of verb/verb phrases and noun/noun phrases by
first applying parts-of-speech (POS) tagging to each DOM attribute
and then generating the parse trees for all tagged attributes of
clickable elements via probabilistic context-free grammar learn-
ing [11, 21, 22]. The verb/verb phrase and noun/noun phrase with
highest probability are extracted as the label.

We implemented our labeling techniques in a tool calledCrawLa-
bel.CrawLabel leverages various open-source tools—KeyBERT [3],
the Stanford CoreNLP toolkit [29], and the NLTK library [28]—to
generate test labels. To add comments in test code, CrawLabel
uses the plugin architecture of Crawljax [2].

We evaluated the effectiveness of the supervised and unsuper-
vised labeling techniques, alongwith two baseline techniques, using
a corpus of 13 open-source web applications that have been used in
prior empirical studies of web application testing techniques [5, 7].
We generated end-to-end tests using Crawljax and created a ground
truth of labels for the steps of each test case. We divided the 13
applications into a training set of five applications and a testing set
of eight applications; the first set was used for creating rules for
the supervised approach; the second set was used for evaluating
the four competing techniques. We used a set of metrics (precision,
recall, F1 score, and edit similarity) to measure the accuracy of the
four techniques against the ground truth.

Our results show that both the supervised and unsupervised
approaches can be quite effective in computing labels; moreover,
they both outperform the baseline techniques with a difference
that is statistically significant. On average, the supervised approach
achieves precision, recall, F1 score, and edit-similarity score of 83.38,
60.64, 66.40, and 73.27, respectively. The unsupervised approach,
although less effective, is quite competitive, achieving scores of
72.37, 58.12, 59.77, and 66.97, respectively. These results are promis-
ing because the unsupervised approach does not require a training
set of web applications for computation and ranking of labeling-
relevant DOM attributes. We note, however, that there is also scope
for improvement in both techniques.

Our results also emphasize the key roles played by clickable
elements—often, analyzing just the clickable element is sufficient to
get useful labels about test steps—and certain HTML attributes (e.g.,
text and href) that are more likely to contain labeling-relevant in-
formation than other HTML attributes. We discuss the implications
of our findings for further research on the topic of summarizing
end-to-end UI test cases.

The contributions of this work are:
• A first investigation of the readability and understandability
aspects of automatically generated end-to-end test cases.

• Novel supervised and unsupervised techniques that apply NLP
to DOM attribute to compute labels for test steps that interact
with the UI.

• Empirical assessment of the effectiveness of the labeling tech-
niques, with comparison against baseline techniques.
We provide a replication package consisting of the CrawLa-

bel implementation, benchmark applications, UI test cases, and
evaluation artifacts [4].

CrawLabel: Computing Natural-Language Labels for UI Test Cases AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Welcome To JPetStore

Created By John Doe

Enter The Store

State1

BirdsReptiesDogsFish Cats

Fish
Saltwater, Freshwater
Dogs
Various Breeds
Cats
Breeds, Exotic Varieties
Reptiles
Lizards, Turtles, Snakes
Birds
Exotic Varieties

 JPetStore Sign In Search

State2

FI-FW-02 Gold Fish

NameProduct id

AngelFish

FI-SW-04

FI-FW-01

FI-SW-01

Tiger Shark

Koi

Return To Main Menu

 JPetStore Sign In Search

BirdsReptiesDogsFish Cats

Fish

State4
 JPetStore Sign In Search

Friendly English Dog

Product id

K9-BD-01 Bulldog
Name

Return To Main Menu

BirdsReptiesDogsFish Cats

State3

1

4

2

3

Figure 1: Sample states of the Jpetstore web application

S2 S2Load
URL S1 S3

En
te

r T
he

St

or
e

Se
ar

ch

Re
tu

rn
 to

 M
ai

n
M

en
u

S4Fi
sh

Figure 2: UI path for the example test case

Welcome To JPetStore

Created By John Doe

Enter The Store

State1

 //*[@id="Content"]/p[1]/a

text

context

attribute

Figure 3: Example web page, DOM, and clickable with XPath

locator

2 BACKGROUND

In this section, we provide background information on UI testing
and NLP techniques leveraged in our approach.

2.1 UI Testing for Web Apps

UI testing for web apps is typically performed through automated
UI test cases (e.g., the example shown in Listing 1) that employ
browser automation tools such as selenium in order to perform
user interactions on the web application. UI test cases can be ei-
ther manually written, created using record-replay tools or even
automatically generated using test generation tools.

Definition 1. [Application State (S)] is a tuple (D, V , [𝛼 ...])
where D is the dynamic DOM of the page,V is the screenshot of
the page and [𝛼 ..] is the list of clickable elements in the page.

Definition 2. [State Transition (A𝑥)] is a tuple (S𝑥
𝑠𝑟𝑐 , 𝛼𝑥 , S𝑥

𝑡𝑔𝑡)
where exercising a clickable 𝛼𝑥 in a state S𝑥

𝑠𝑟𝑐 produces a transition
to state S𝑥

𝑡𝑔𝑡 .

Definition 3. [Path (P)] A sequence of transitions (A0...A𝑛) is
a P if for 0<=𝑖<n, A𝑖 , A𝑖+1 ∈ P =⇒ A𝑖 (S𝑡𝑔𝑡) == A𝑖+1(S𝑠𝑟𝑐).

Definition 4. [TestCase T] Given a path P = (A0...A𝑛), a test
case can be represented as [S0

𝑠𝑟𝑐 , 𝛼0, S0
𝑡𝑔𝑡 , 𝛼1, S1

𝑡𝑔𝑡 , . . . , 𝛼𝑛 ,S𝑛
𝑡𝑔𝑡],

where S0
𝑠𝑟𝑐 is the source state of the path, and 𝛼𝑥 , S𝑥

𝑡𝑔𝑡 are the
clickable and target state of A𝑥 , respectively.

Regardless of the mode of creation, an automated UI test case (T,
definition 4) essentially is a programmatic representation of what
we call a UI path (P , definition 3). A UI Path (P) is a series of state
transitions (A , definition 2) that are observed in the browser as a
result of user interactions. We refer to interactive elements such
as buttons available in each application state (S , definition 1) as
clickables (𝛼).

Consider the example UI test case T𝑒𝑥 shown in Listing 1. The
UI path (P𝑒𝑥) shown in Figure 2 represents the transitions for the
path. The application states in P𝑒𝑥 are shown in Figure 1. We use
text labels in the path diagram for easier comprehension.

When a test case is being created, human testers typically extract
the locator required to identify the target clickable using the DOM
hierarchy from browser developer tools. In Figure 3, we show an
example XPath for the clickable ‘Enter the Store’ extracted from the
DOM of the application state S1. Our example test case contains 4
state transitions in total, each after a user interaction (typically a
click) that causes a state change in the browser.

As the example in Listing 1 demonstrates, it is challenging for
a human to comprehend the semantics of a given automated UI
test case when there are no labels. Given the susceptibility of UI
test cases for breakages [20], the human effort required for test
maintenance only increases when they are not comprehensible.

2.2 AI Frameworks

We provide the background on KeyBERT and Probabilistic Contex-
Free Grammar (PCFG). KeyBERT and PCFG are the building blocks
for our supervised and unsupervised approaches, respectively.

2.2.1 KeyBERT. KeyBERT [18] is a keyword extracting technique
based on the popular Bidirectional Encoder Representation of Trans-
formers (BERT) technique. It has three steps for extracting key-
words from a set of documents. In the first step, it creates candidate
keywords or phrases in terms of n-grams from a document. N-grams
represent the sequence of word representation in a document. In
the second step, it creates a BERT-based embedded representation
for documents and the candidate keywords or phrases. In the third
step, it finds the candidates that are most similar to documents
using the cosine similarity.

For a clickable,
<a href="/jpetstore/actions/Account.action?
newAccountForm=">Register Now!

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

Raw Input

Paths
(Clickables)

Processed
Data

Clickables
DOM

Context
DOM

Framework
Exists in
Training
Data?

Unsupervised Approach
PCFG + POS

Tags +
VerbNet

Model

Supervised Approach
Training Data
(N Apps, K

Frameworks)
ModelKeyBert-Heuristic

Approach

Generate labels
(Labelled Paths)

No

Yes

Figure 4: Overview of our approach for label generation

with html tags as stop words, KeyBERT outputs a list of tuples. In
each tuple, the first element is the keyword/keyphrase, and the
second element is the probability: [(’account newaccountform’,
0.5779), (’actions’, 0.2787), (’jpetstore’, 0.4154), (’now’, 0.1297), (’reg-
ister now’, 0.4638)].

2.2.2 Probabilistic Context-Free Grammar (PCFG). PCFG extends
context-free grammars by assigning a probability to each produc-
tion rule. A PCFG is represented by a tuple ⟨𝑁, Σ, 𝑅, 𝑆, 𝜃⟩. Here
𝑁 is a finite set of non-terminal symbols, Σ is a finite set of ter-
minal symbols, 𝑅 is a finite set of production rules of the form
𝑋 → 𝑌1, 𝑌2, ..., 𝑌𝑛 and 𝑌𝑖 ∈ (𝑁 ∪ Σ), 𝑆 ∈ 𝑁 is a distinguished start
symbol. 𝜃 (𝑋 → 𝑌1) represents the probability that captures the
conditional probability of choosing a production rule 𝑋 → 𝑌1.

For a label “register user” we obtain the following grammar
using the Standford parser: S −→ VP, VP −→ (VB, NP), VB −→
register, NP −→ NN, and NN −→ user. Here, S represents the start
symbol, VP, NP, VB, and NN represent non-terminals and register
and user represent terminals. Using PCFG, we obtain the following
parameters and their probabilities bounded by the constraint: q(S
−→ VP) = 1, q(VP −→ VB) + q(VP −→ NP)=1, q(NP −→ NN) =1,
q(VB −→ register) = 1, q(NN −→ user) = 1.

3 OUR TECHNIQUE

Automated UI tests, such as the one shown in Listing 1, consist of
actions performed on UI elements present in web pages. Each click
𝛼𝑥 results in a state transition (A𝑥). To assist users in understanding
automatically generated test cases, we want to generate labels for
each clickable 𝛼𝑥 , consisting of an action phrase and its target
phrase that represent 𝛼𝑥 and its target state S𝑥

𝑡𝑔𝑡 , respectively.
For label generation, we consider two sources of information:

the first is the DOM of a clickable and the second is its context.
Formally, the context of a clickable is defined as follows:

Definition 5. Context (C) Given a clickable 𝛼 and dynamic DOM
of the pageD, context C is the largest sub-DOM that contains only
one clickable which is 𝛼 .

To obtain the context of a clickable 𝛼 , we traverse upward in
the DOM, starting at the node for 𝛼 , until a subtree that contains
another clickable (different from 𝛼) is reached. We obtain the DOM
and the context from a UI path: for each clickable 𝛼𝑖 , we get the
DOM attributes and its context in the source state S𝑖

𝑠𝑟𝑐 .
Figure 4 shows the overview of our approach. Once a user gener-

ates paths using Crawljax, we preprocess the clickables in the paths
to extract the DOM and the context for each clickable. Then, we
check if the AUT uses a framework(e.g., AngularJS) present in our
training data. If it does, the user can run the supervised approach to
generate labels from the clickables. If the framework is not present,

the user can choose the unsupervised approach to generate the
labels. In the following, we provide the details of the supervised
and the unsupervised approaches.

3.1 Supervised approach

We propose a Supervised approach to extract meaningful seman-
tic information from a DOM tree. First, we consider applications
developed using different frameworks such as JQuery, AngularJS,
React, etc. as our training data. From the training data, we iden-
tify attributes that tend to be the most representative source of
a clickable 𝛼 . For example, in the application petclinic, the most
frequent attributes are text, href, title, and aria-label. In addition,
we find frequent framework-specific (AngularJS) features such as
ng-reflect-router-link and routerlink. We create an 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 con-
sidering the frequent attributes. For a new application, serving as
our test data, we extract the attribute values using the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡
as shown in Algorithm 1.

In some cases, we observed that simply extracting the value of
an attribute might generate less meaningful keywords that are not
indicative of an action. For example, consider the clickable
<a href="/jpetstore/actions/Catalog.action?viewProduct=&productId
=FI-SW-01">FI-SW-01

Here, according to the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 , the first checked attribute is
“text”, however, the text “FI-SW-01” is not meaningful. In such cases,
we consider the value under href as shown below, as it seems to be
more meaningful than “FI-SW-01”.
/jpetstore/actions/Catalog.action?viewProduct=&productId=FI-SW-01

However, the value might have multiple subsequences of words
that could reflect the true action representation for the clickable.
To infer the true action we take the following steps. First, we pre-
proceess the value of an attribute. It includes tokenizing the value
to generate tokens, lemmatizing the tokens, removing stop word to-
kens, and finally removing non-English tokens. Second, we directly
use the phrase as a keyword, or use KeyBERT to extract a meaning-
ful keyword from the value if the value is complicated. For example,
for the above value, we obtain the tokens “view product product id”.
Then, applying KeyBert, we further obtain relevant keywords and
their probabilities as follows: (’product id’, 0.8667), (’view’, 0.4029),
(’product’, 0.6253), (’view product’, 0.7894), (’id’, 0.4704). We choose
the one with the highest probability, i.e., “product id”, as the label.

Algorithm 1: Supervised Approach
Function getLabel(clickable: DOM, context: DOM, attribute_list: List) : str
begin

foreach attribute ∈ attribute_list do
if attribute ∈ clickable.keySet then

if attribute == “href” then
if “?” exists then

label = KeyBert(href.split("?")[1]) return label
else

label = href.split("/")[-1].split(".")[0] return label
end

else if is_English(clickable[attribute]) then
label = preprocess(clickable[attribute]) return label

end

label = KeyBert(preprocess(element))
if label is NaN then

label = KeyBert(preprocess(context))
return label

end

CrawLabel: Computing Natural-Language Labels for UI Test Cases AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

ROOT

FRAG

NP

NN

catalog

NN

view

NN

category

NN

category

NN

id

NP

NN

image

NN

fish

Figure 5: Parse tree representation for values of attributes

associated with a clickable

3.2 Unsupervised Approach

An application that uses a novel framework might contain different
domain knowledge from the frameworks used for training. As a
result, the application might not contain attributes present in our
maintained attribute list. To support such cases, we propose an
unsupervised approach. The approach uses PCFG, which leverages
parts-of-speech (POS) tag analysis to extract relevant keywords
that might represent an action invoked when clicking the click-
able element, and the target of the action. Algorithm 2 depicts our
Unsupervised approach. It consists of the following steps.

Algorithm 2: Unsupervised Approach
Function getLabel(clickable: DOM, context: DOM) : str
begin

attributes = preprocess(clickable)
trees = parser(attributes)
pcfgs = induce_pcfg(trees)
v_list = extract_verbs(pcfgs) #POS tag: VB, VBG, VBD, VBN, VBP, VBZ
verb, _ = sorted(v_list)[-1] #extract the verb with highest probability
n_list = extract_nouns(pcfgs) #POS tag: NN, NNS, NNP, NNPS
noun, _ = sorted(n_list)[-1] #extract the noun with highest probability
if verb is NaN then

verb = match_verb(clickable) #use verbnet to match verb
if verb is NaN then

verb = match_verb(context) #use context to match verb
label = verb + noun
return label

end

First, given a clickable as an input, for example, consider the
clickable 4 in Figure 1
<a href="/jpetstore/actions/Catalog.action;jsessionid=
CBE38E7BFD1E93E99C2B87D154700A6F?viewCategory=&categoryId=FISH">

The clickable can contain a start symbol such as <a> or <button>
along with attributes such as class and href as the children of the
start symbol. The attributes have values such as “/jpetstore/actions

...” for href and “../images/fish _icon.gif” for src.
We preprocess the value by first tokenizing it and then removing

stop words and non-English words. Next, we generate the parse tree
representation with POS tags using the Stanford CoreNLP parser, as
shown in Figure 5. Then, we input all the parse tree representations
into PCFGs, and obtain production rules with their probabilities
using the NLTK library, as shown in Table 1.

In some cases, we observed that POS tag recommendations from
the Stanford parser were incorrect for certain verbs. For example,
in Figure 5, we find that the word “view” has been tagged as a
noun (NN) whereas it should have been tagged as a verb (VB). To
address this limitation, we use VerbNet to replace the incorrectly
identified POS tags. VerbNet [41] is a verb lexicon that links verbs’

Table 1: Production rules where a parent yields a child along

with their probabilities

Parent Child Probability

FRAG NP 0.6
NP NN NN NN NN NN NN NN 0.0909091
NN ’category’ 0.0927152
NN ’id’ 0.13245
NN ’fish’ 0.013245
NP NN 0.254545
NN ’image’ 0.0529801

LabelGen-Core

Label
Generator

Crawljax-Labeling
Plugin

Runner

Crawljax
Test Generator

Labeled
Tests

URL

URL Config

<Tests, Labels>Tests
Labels

Generated
Tests

Figure 6: The workflow of CrawLabel

syntactic and semantic patterns. VerbNet would replace the POS
tag for “view” with a verb (VB).

For extracting an action label, we use a similar approach as
suggested by Kalia et al. [22]. Given a clickable, we first extract the
verb with the highest probability and then extract a noun with the
highest probability, thereby creating an action label as a pair of the
verb and the noun.

If VerbNet cannot detect the verb, we use the context by mapping
HTML tags to verbs. <nav>, and <menu> aremapped to “navigate
to”; <option> and <select> are mapped to “select”. The default verb
is set to “view” if none of the tags mentioned above exists.

4 IMPLEMENTATION

Our technique is implemented in a tool called CrawLabel that is
publicly available [4]. Figure 6 presents an overview of the workflow
implemented in CrawLabel, which takes as input the URL of the
web application under test and generates labeled UI test cases.
CrawLabel first invokes Crawljax [2], a state-of-the-art automatic
UI test generator for applications. Then, it analyzes the generated
tests to infer natural-language labels for test steps and outputs
labeled UI tests.

For each clickable exercised in a UI test case, Label Generator
retrieves the corresponding application state (captured in the DOM)
and invokes the appropriate NLP engine (supervised or unsuper-
vised) to generate a natural-language label. Finally, using the gener-
ated label, Crawljax-Labeling Plugin modifies the original test case
to incorporate the generated label as a code comment associated
with the corresponding test step (as illustrated in Listing 2).

The “Runner” and “Label Generator” components are imple-
mented in Python and the “Crawljax-Labeling Plugin” is imple-
mented in Java using the plugin framework provided by Crawljax.
Amore detailed flowchart of label generation is provided in Figure 4.

For the Supervised approach, we use the open-source tool Key-
BERT [3] to compute the label in cases where the attribute is com-
plicated or the clickable does not contain any of the attributes
included in the rules. For the Unsupervised approach, we use the
Stanford CoreNLP toolkit [29] to perform POS tagging and the

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

Table 2: Crawling results of Crawljax

Application # Paths # States # Edges # URLs Exit Status

Dimeshift 1 12 14 3 Exhausted
Pagekit 42 105 113 23 Maximum Time
Petclinic 61 36 84 14 Exhausted
Retroboard 10 12 18 6 Exhausted
Splittypie 47 28 77 10 Exhausted
Addressbook 41 35 74 19 Exhausted
Claroline 86 91 200 63 Maximum Time
Collabtive 39 16 25 14 Exhausted
Jpetstore 20 19 39 16 Exhausted
Mantisbt 119 104 199 18 Maximum Time
Mrbs 3 36 70 36 Maximum Time
Phoenix 1 205 404 5 Maximum Time
Ppma 43 23 46 14 Exhausted

NLTK library [27] to construct PCFGs from the parse trees. If a
verb is not recognized by the Stanford parser, we use the VerbNet
module provided in the NLTK library [28] to search for verbs.

Although our current implementation generates labels for Crawl-
jax generated tests, with an appropriate parser and adapter modules
for the source code of test cases, it is possible to extend it for other
kinds of Web UI tests. For example, in order to adapt CrawLabel
for manually written UI tests, instrumentation or event-listener
frameworks could be used to track the browser events and gather
required information for label generation. Test suites intended to
be maintainable (by using design patterns such as page objects)
require substantial manual effort to create and adding labels to
such test suites could further enhance their understandability and
maintainability.

5 EMPIRICAL EVALUATION

Our evaluation focuses on investigating the research question of the
effectiveness of the Supervised and Unsupervised approaches, along
with two baseline techniques, in computing labels for UI test cases.
We measure effectiveness using multiple metrics and compute them
with respect to a manually constructed ground truth of test-case
labels. After describing the benchmark open-source web apps (§5.1),
the evaluation metrics (§5.2), and the baseline techniques (§5.3), we
present the results of the evaluation (§5.4). We then discuss key
findings and their implications (§5.5) and conclude this section with
a discussion of threats to the validity of our results (§5.6).

5.1 Benchmark Applications

We use 13 open-source web applications (Table 2) that have been
used in prior work on UI testing [5, 7]. For each application, we
provide Crawljax with appropriate configuration (e.g., form-fill
data) tomaximize its state exploration and a time limit of 60minutes,
similar to prior studies [48].

In Table 2, # Paths represents the number of paths crawled by
Crawljax during the exploration, which equals the number of gener-
ated test cases. # States represents the number of abstract UI states.
Edges represents the number of clickables that cause state tran-
sitions. # URLs represents the number of unique URLs. Column 6
shows whether Crawljax completed its run within the one-hour
limit (“Exhausted”) or terminated after reaching the time limit
(“Maximum time passed”).

We created a manual label to summarize each clickable and the
state transition it causes. Two of the authors created the labels

Table 3: Frameworks used by the training-set apps

Application Framework

Dimeshift JQuery
Pagekit UIKit
Petclinic Angularjs

Retroboard React
Splittypie Emberjs

Table 4: Frameworks used by, and labeled clickables for, the

evaluation-set apps

Application Framework # labels

Addressbook Javascript 46
Claroline Javascript (claroline.js) 190
Collabtive Javascript 21
Jpetstore Javascript 39
Mantisbt Javascript 148
Mrbs Javascript 67
Phoenix React 404
Ppma JQuery 42

dimeshift pagekit petclinic retroboard splittypie

text
href
class
title
ng-reflect-router-link
aria-label
routerlink
id
value
data-i18n
data-dismiss

10 61 60 9 26
3 28 9 0 7
1 18 0 3 15
0 14 1 1 14
0 0 9 0 0
0 0 2 0 6
0 0 8 0 0
3 0 0 3 0
2 0 0 0 0
2 0 0 0 0
1 0 0 0 1

Figure 7: Frequency distribution of attributes for test cases

of the training-set apps

independently, and conflicts were resolved by discussion. It took
approximately 30 minutes to three hours to label each application.
During this process, we classified some clickables as “cannot be
labeled” if a human cannot perform the associated actions. For
example, a clickable can appear behind a UI modal dialog, in which
case a human cannot click it, but because the clickable occurs in a
DOM tree, Crawljax can fetch it. There are 18 elements that cannot
be manually labeled in 8 applications which accounts for 1.9% of
all elements. Edges that have the same XPath and target state are
viewed as duplicate clickables and only one is kept (e.g., a clickable
in the navigation bar an application that occurs in all states of the
application).

The supervised approach requires training data. We use five of
the 13 applications as the training data because they have different
frameworks (shown in Table 3), and one application is randomly
selected when multiple applications have the same framework.
The remaining eight applications serve as the evaluation-set apps;
Table 4 lists these applications along with the frameworks used and
the number of labeled clickables.

Using the training data, we count the number of times a label
has an overlap with the attribute of the clickable and rank these
attributes based on frequency. Figure 7 visualizes the results. As
shown in the figure, text is the most relevant attribute for labeling,
followed by href, class, and title.

CrawLabel: Computing Natural-Language Labels for UI Test Cases AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

5.2 Evaluation Metrics

We use the following metrics for the evaluation.

5.2.1 Precision, Recall, and F1. Precision, recall, and F1 measures
arewidely used in evaluation of summarization techniques. For each
clickable element, the manually assigned labels are considered as
the reference text or the ground truth. Thesemeasures are computed
by comparing the model output with the reference text:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑊𝑟𝑒𝑓 |∩ |𝑊𝑐𝑎𝑛𝑑 |

|𝑊𝑐𝑎𝑛𝑑 | × 100

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑊𝑟𝑒𝑓 |∩ |𝑊𝑐𝑎𝑛𝑑 |

|𝑊𝑟𝑒𝑓 | × 100

𝐹1 = 2𝑃𝑅
𝑃+𝑅 × 100

where𝑊𝑐𝑎𝑛𝑑 and𝑊𝑟𝑒 𝑓 denote the words contained in the model
output and the reference text, respectively.

5.2.2 Rouge. Rouge [30] is a set of metrics (ROUGE recall, preci-
sion, or F1 score) widely used in measuring accuracy of summariza-
tion. Rouge-N measures the number of matching “n-gram” between
the model output and the reference text. Rouge-L measures the
longest common subsequence (LCS) between the model output and
the reference text. For Rouge-2, if the manual label contains only
one word (e.g., “login”), we use the value of Rouge-1 as Rouge-2 (as
a smoothing method) [9].

5.2.3 Edit Similarity. Levenshtein distance [50] is a string metric
for measuring the smallest number of edit operations required to
transform one string to another. The character-level edit similarity
is calculated as (1 − normalized Levenshtein distance) × 100. The
higher the edit similarity, the more similar the model output is to
the reference text.

5.3 Baseline Techniques

To the best of our knowledge, there is no existing tool or technique
for labeling, summarizing, or generating comments for UI test steps.
Therefore, we created two simple internal baseline techniques to
evaluate our approach against: the Preprocess approach and the
KeyBERT approach.

The Preprocess approach first converts the attributes of a click-
able into a bag of words, and then performs tokenization and lemma-
tization, followed by removal of stop words and non-English words.
This simple baseline is intended to maximize the recall by retaining
as many words as possible from the attributes of a clickable.

The KeyBERT approach leverages a keyphrase extraction tech-
nique with a pretrained model (trained on natural-language docu-
ments). It takes a clickable as input and generates for it a label of
length one or two. It uses HTML tags as stop words and Maximal
Margin Relevance [10], a diversity ranking technique, to create key-
words/keyphrases based on cosine similarity. This baseline, thus,
enables the investigation of how a keyphrase extraction tool that is
trained on natural-language documents (e.g., news) performs on
the information associated with DOM clickables. An alternative
to KeyBERT possibly could be using programming-specific [8] or
domain-specific dictionaries. However, in our current approach,
we view each application as a domain-independent application;
i.e., labels are computed as general and well-known English terms.
Thus, we hypothesize that a pre-trained model trained on news
documents could be sufficient for our requirement.

5.4 Results and Analysis

For each generated label, we calculate Rouge-1, Rouge-2, Rouge-L,
and edit similarity. To reduce the inaccuracy introduced by manual
labels, we remove English stop words, and lemmatize labels with
the python NLTK library. For example, “adding an event” and “add
event” are considered to be equivalent.

Table 5 presents the average scores by the techniques over all
labels. We use the notation r@𝑥 , p@𝑥 , and f@𝑥 to represent the
recall, precision, and F1 score of Rouge-𝑥 , where 𝑥 = 1, 2, or 𝐿,
representing 1-gram, 2-gram, and LCS, respectively.

Technique effectiveness. For each column in Table 5, the highest
score is highlighted in boldface. We find that the Supervised ap-
proach performs better than the baselines and the Unsupervised
approach in terms of precision, F1 score, and edit similarity. The
Preprocess baseline outperforms other approaches in terms of re-
call; this is expected because it retains all the words in a clickable
except the stop words. Our approaches are extractive, which means
that they cannot generate words that do not appear in a clickable’s
attributes. Preprocess, thus, represents the best recall that can be
achieved by an approach that generates labels by analyzing the
clickable only. Overall, on average, Supervised achieves the best
scores on seven of the 10 metrics, whereas Unsupervised ranks
second on six of the metrics.

Figure 8 presents as boxplots how the techniques perform on
each application under the metrics f@1, f@2, f@L, and edit similar-
ity. For the metric f@1, in terms of the median value, the Unsuper-
vised approach performs better than or the same as the baseline
techniques for six applications. The Supervised approach performs
better than or the same as other approaches for six applications.
For Mrbs, Supervised approach does not perform better than Un-
supervised approach because the attribute of clickable contains
insufficient information; e.g., consider the clickable
<a href="week.php?year=2022&month=05&day=14&area=1&
room=1">
May 08
.

The label here represents a date; however, the entire clickable
represents the action of viewing the week of of the relevant date.
For Mantisbt, Supervised does not perform better than KeyBERT
again due to incomplete information in the clickable.

For metric f@2, Supervised and Unsupervised perform better
than or the same as the baselines for six applications and three
applications, respectively. For the Address application, Supervised
and Unsupervised do not achieve good scores because the ground-
truth label often contains more than three words.

For metric f@L, Supervised and Unsupervised perform better
than or the same as the baselines for seven applications and five
applications, respectively.

In terms of edit similarity, Supervised and Unsupervised perform
better than or the same as the baselines for six applications and
three applications, respectively. For Ppma, Supervised approach has
a median score lower than KeyBERT because Supervised approach
either generates labels that exactly match the reference text or do
not match, while KeyBERT generates more partially matched labels.

The Supervised approach has the benefit that the generated la-
bel maintains the original order of a phrase. However, it is not
as flexible as the Unsupervised approach in combining verbs and

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

Table 5: Effectiveness scores achieved by the techniques on average. We use the notation r@𝑥 , p@𝑥 , and f@𝑥 to represent the

recall, precision, and F1 score of Rouge-𝑥 , where 𝑥 = 1, 2, or 𝐿, representing 1-gram, 2-gram, and LCS, respectively

Method p@1 r@1 f@1 p@2 r@2 f@2 p@L r@L f@L edit-sim

Preprocess 38.31 75.83 46.18 16.15 60.70 24.15 38.10 75.27 45.89 44.35
KeyBERT 72.78 50.22 56.54 26.80 21.69 23.08 66.67 45.65 51.36 60.02
Supervised 83.38 60.64 66.40 49.16 44.85 46.03 83.01 60.27 66.03 73.27

Unsupervised 72.37 58.12 59.77 37.29 35.56 35.19 70.07 55.24 57.25 66.97

Figure 8: F1 scores of Rouge-1(f@1), Rouge-2(f@2), and Rouge-L(f@L), and edit-similarity scores for each application

Figure 9: F1 score ofRouge-1(f@1), F1 score ofRouge-2(f@2),

F1 score of Rouge-L(f@L), and edit-similarity scores

nouns, especially when the input is less meaningful and the com-
plete phrase is split amongst multiple attributes. The Unsupervised
approach is limited by POS tagging, which is designed for natu-
ral language instead of DOM: e.g., in some cases, POS tagging on
DOM attributes fails to identify verbs correctly. The performance
of Supervised and Unsupervised is also related to the number of
words in the ground-truth labels: on longer labels (e.g., containing
four or five words), both techniques become less effective.

Figure 9 presents a stripplot illustrating the distribution of f@1,
f@2, f@L, and edit similarity for each approach. The overall distri-
bution of the Supervised approach is the best, as it has more data
points with high scores. The scores of Preprocess and Unsuper-
vised have a wider distribution, whereas the scores of KeyBERT
and Supervised are more centralized.

Inaccuracies related to action verbs. To better understand the ef-
fectiveness of the Unsupervised approach in extracting verb phrases,
we manually labeled the action verbs from the clickable elements.
For the action verbs that appeared more than twice, their frequency
of occurrence is depicted in Figure 10. The value “none” represents

ad
d

no
ne

ca
nc

el
fil

te
r

sa
ve

vi
ew so
rt

ed
it

de
le

te
se

ar
ch

up
da

te
cr

ea
te

lo
gi

n
pr

in
t

se
le

ct
ba

ck
en

te
r

ap
pl

y
lo

go
ut

m
an

ag
e

en
ro

l
im

po
rt

ne
w

se
nd

sig
n

in

Action verb

0

50

100

150

200

Nu
m

be
rs

 o
f a

pp
ea

ra
nc

es
209

186

147

79 73
60

31 31
11 11 10 10 7 7 7 7 6 5 4 4 4 3 3 3 3

Figure 10: The distribution of action verbs

the instances where a meaningful verb phrase could not be ex-
tracted solely from a clickable element; i.e., without incorporating
additional information from the target state.

The percentages of correct action verbs extracted by Prepro-
cess, KeyBERT, Supervised, and Unsupervised are 98.05%, 77.6%,
72.9%, and 73.02%, respectively. We analyzed the verbs that the
Unsupervised approach failed to identify. Both VerbNet and PCFG
cannot identify “sort” and “edit” as verbs, whereas “enabled” is
identified as verb by PCFG. Therefore, we expect that improving
the parts-of-speech recognition would increase the accuracy of the
Unsupervised approach.

Statistical analysis. To understand whether the differences be-
tween techniques are statistically significant, we performed paired
𝑡-tests for each pair of techniques to determine whether there are
differences between their mean values. We consider parametric
tests over non-parametric tests for the following reasons: they per-
form well with skewed and non-normal distributions, they perform
well even if the spread of each group is different, and they have
more statistical power than non-parametric tests.

CrawLabel: Computing Natural-Language Labels for UI Test Cases AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

The null hypothesis for our test is that two approaches are not
significantly different (true mean difference is zero). We ran the
tests on the metric scores mentioned in Table 5, with the following
results:

approach1 approach2 t-value p-value

Supervised Preprocess 49.58 0.00
Supervised KeyBERT 36.20 0.00
Unsupervised Preprocess 28.30 0.00
Unsupervised KeyBERT 14.80 0.00

With confidence level 𝛼 = 0.05, each pair has 𝑝-value less than
𝛼 , so we can reject the null hypothesis, indicating that both the
Supervised and Unsupervised approaches are significantly better
than the baseline techniques.

5.5 Discussion

We next discuss a few key findings from our evaluation and im-
plications for further research on development of techniques for
generating natural-language descriptions of UI test steps.

Importance of clickable elements. The success of the Supervised
approach reveals that, frequently, the clickable element of a UI test
step contains attributes that carry meaningful information about
its function. Some attributes, such as text and href, tend to contain
more relevant information than other attributes. This is evident by
the high average precision, recall, and F1 score that the Supervised
approach achieves: 83.01, 60.27, and 66.03, respectively.

Differencing the source and target states. Intuitively, analyzing
differences between the source and target states of a clickable and
focusing on the state transformation triggered by the clickable
could provide useful information about semantics of the action
performed that is relevant for label computation. We investigated
this aspect via tree differencing [14] between the source and target
states and incorporating the tree differences into label computation.
Unfortunately, we found that this caused a significant reduction
in the precision. We attribute this phenomena to too much noise
being added beyond the semantic differences that appear in the
result. For example, consider the following clickable element:
add new

It has the context
<li class="all"> add new

We extract the following visible text from diffing the source and
target states: “h1 [+] | | | | | | | Preferences input label textarea

Edit / add address book entry Address: name rows quickadd submit Next

quickadd Next address 20”. The meaningful label is “add address book

entry Address”. It exists in the diff, but along with a lot of other text
that adds noise for meaningful label extraction.

We did find cases where the tree diff contains labeling-relevant
information that is available in neither the clickable nor its context
in the source state. Thus, further investigation of the usefulness of
state differencing for labeling would be worthwhile.

The Unsupervised approach is competitive. The results on the
Unsupervised approach are quite promising, considering that (1) it
does not require training data and prior familiarity with the AUT,
and (2) its performance according to our evaluation is only slightly
less than that of the Supervised approach. Beyond straightforward
label generation, it can be useful also for clarifying domain-specific

words. By associating specific verbs and nouns, it can assist with
human comprehension of the semantics of an action and its result.
Further exploration of improvements in the Unsupervised approach
could, thus, be a fruitful research direction.

Usefulness of analyzing the context of clickables. We further ex-
perimented with disabling context analysis for the Unsupervised
approach. This causes average p@1, r@1, f@1, p@2, r@2, f@2, p@L,
r@L, f@L, and edit-sim values over the eight applications to reduce
by 18.14%, 36.99%, 31.02%, 73.02%, 70.16%, 71.10%, 16.08%, 34.54%,
28.72%, and 21.44%, respectively. This reduction indicates that con-
text analysis is important and contributes to the effectiveness of
the Unsupervised approach; especially when both POS tagging and
VerbNet cannot find a verb by analyzing only the clickable.

For the Supervised approach, however, disabling context analysis
has a very small effect: average p@1, r@1, f@1, p@2, r@2, f@2,
p@L, r@L, f@L, and edit-sim values over the eight applications to
reduce by 0.08%, -0.29%, 0.03%, 0.04%, -0.20%, 0.09%, -0.26%, 0.05%
and 0.26%, respectively.

5.6 Threats to Validity

Like any empirical study, there are threats to the validity of our
results; we discuss here the most significant among those.

In terms of external validity, because our evaluation is based on
a corpus of 13 web applications, our results may not generalize to
other applications. However, we note that these web applications
have been used in prior empirical evaluations of web application
testing techniques, and also that there is considerable variation in
applications in terms of the frameworks used (Tables 3 and 4). Our
results are based on test cases generated using Crawljax (Table 2)
and, thus, may vary with other test cases (generated manually or
automatically) that exercise parts of the applications state space
not covered by the tests used in the study. Our evaluation was done
with specific tool configurations (e.g., KeyBERT parameters) and
our results may vary with other configuration settings.

As for threats to internal validity, there may be bugs in our im-
plementation or errors in the manual ground-truth construction,
whichmay affect our results.Wemitigated the threat of implementa-
tion bugs by testing CrawLabel thoroughly and checking a subset
of the computed results by hand. To reduce the chances of errors
in manual label computation, one author collected each clickable
with its DOM, context, screenshot of source state and screenshot
of target state, then two authors each labeled the clickables. The
two authors resolved labeling conflicts through discussion.

Finally, with respect to conclusion validity, in measuring the
accuracy of computed labels against ground-truth labels, we did
not consider synonym matches. This may lower our evaluation
scores when the model output does not match the reference text,
but still makes sense to a human by accurately capturing the action
performed in a test step.

6 RELATEDWORK

Test-Case Comprehension. Several works investigate the practi-
cal challenges associated with using automatically generated test
cases. The user studies they conduct also discuss the question of
understandability and its impact on developers and on the testing
process. A study by Fraser et al. with 97 subjects (participating

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

either in a user study or in its replication) reveals that automati-
cally generated unit test cases have a negative effect on the ability
to capture intended class behavior, which can be attributed to the
struggle to understand the generated tests [16]. This observation
however is less conclusive in the replication study than in the origi-
nal one. A subsequent study with 31 students provides no evidence
that software quality changes with automated unit test generation,
and concludes that automatically generated unit tests must be easy
to read and understand for effective use by developers [40]. A user
study by Panichella et al. with 30 subjects shows that with the addi-
tion of test case summaries, improved test case understanding helps
developers find twice as many bugs in automatically generated unit
test cases than without the summaries [38].
Test-Case andCode Summarization. Summarization techniques
have been applied to unit-level test cases for the purpose of test case
documentation. In [26], a technique named UnitTestScribe is pro-
posed to automatically generate natural language documentation
of unit test cases, using static analysis, natural language process-
ing, backward slicing, and code summarization. In [38], dynamic
information is leveraged by applying code summarization at the
single test case level to the lines of code it covers.

In [13], a technique for creating meaningful unit test case names
is suggested, by summarizing the datatypes targeted by the test
case for the inputs and output of the method under test.

More generally, there exists a large body of work on automated
code summarization [36, 51] that employs various techniques, such
as static and dynamic program analysis, natural-language process-
ing, and information retrieval, to generate descriptive comments
for source code, with an end goal of assisting with program com-
prehension and software maintenance.

To the best of our knowledge, summarization techniques have
not been applied to-date to end-to-end tests that exercise the appli-
cation under test via its UI.
Webpage Summarization. There are two types of approaches
for summarizing texts in webpages: extraction-based summariza-
tion [35] and abstraction-based summarization [34]. For extractive
summarization, key-sentences or key-phrases are extracted from
the original content. For abstractive summarization, the summary
is a semantic representation of the original content. This para-
phrasing involves both natural-language processing and a deep
understanding of the domain of the original content. These ap-
proaches usually summarize whole pages or segments, whereas we
deal with clickables, focusing on smaller regions.

Mukherjee et al. [37] propose structural and semantic analysis
to partition HTML documents, and annotate them with semantic
labels using an ontology encoding domain knowledge. In contrast,
our approaches do not require domain specific knowledge in ad-
vance. Shah et al. [43] propose D-rank, an unsupervised keyword
extraction technique for a single web page, based solely on its text
and structural information. D-rank extracts words from common
web page locations such as headings and hyperlinks, and ranks
them according to their position and frequencies. Xiong et al. [47]
propose a neural keyphrase extraction technique for web page with
both text and visual features.

Reference [39] surveys a large body of work on keyphrase extrac-
tion from documents (not limited to DOM-type ones) in order to

concisely summarize their content. The survey separately discusses
unsupervised and supervised techniques, and classifies them based
on the approach type (e.g., statistics-based, graph-based ranking,
topic-based, language model-based, classification-based, and deep
learning). The survey also discusses types of features and several
technique extensions, such as ensemble models via stacking, incor-
porating information from similar documents, and incorporating
semantics via knowledge graphs.
Natural-Language Locators. Prior research on creating change-
resilient test scripts for UI test cases has proposed the usage of
natural-language locators. Yandrapally et al. [49] generate textual
clues from the DOM hierarchy to disambiguate target UI elements
instead of conventional locators that use XPaths. The textual clues
extracted do not necessarily relate to the semantics of the target
element but rather act as visual locators through which the target
element can be identified unambiguously. In contrast, our technique
extracts semantically meaningful labels for test steps and assisting
with test comprehension. Kirinuki et al. [24] propose a domain-
specific language for testers to specify actions on the web pages and
automatically identify web elements based on the specified string.
They vectorize the specified target string and the web-element
attributes; and compare the vectors to compute similarity in order
to identify the intended target element. Our technique instead
analyzes only the DOM tree to automatically generate semantically
meaningful labels for web elements and does not rely on any human
input.

7 SUMMARY AND FUTUREWORK

In this work, we presented an approach for generating natural-
language labels for UI test cases and its implementation in a tool
called CrawLabel. CrawLabel applies NLP to selected DOM at-
tributes and uses two techniques for selecting the DOM attributes:
a supervised ranking-based technique and an unsupervised tech-
nique based on probabilistic context-free grammar learning. Both
techniques achieved relatively high precision, recall, and F1 score.
The unsupervised technique proved competitive though the super-
vised one performed slightly better. Our results also show that, in
most cases, analyzing only the clickable element for a test step is
sufficient to generate a meaningful label.

We implemented the approach in the context of automatically
generated UI test cases for web applications (leveraging the Crawl-
jax tool), but it is applicable more generally to developer-written
test cases as well as to UI test cases for other types of applications
(e.g., mobile apps).

In the future, we plan to perform a more comprehensive tech-
nique evaluation by conducting a user study that will investigate
the impact of our generated test-step labels on developer tasks,
such as test-case comprehension and failure diagnosis, and what
skills and level of domain expertise are assumed/required to benefit
from this technique. There are also several potential directions for
improving and extending our labeling technique, such as better
analysis of source contexts of clickable elements and resulting tar-
get states, computation of more descriptive labels for test steps, and
generation of summaries for entire test methods, by combining the
labels of individual test steps.

CrawLabel: Computing Natural-Language Labels for UI Test Cases AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Silviu Andrica and George Candea. 2011. WaRR: A tool for high-fidelity web
application record and replay. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems Networks (DSN). 403–410. https://doi.org/10.1109/DSN.2011.
5958253

[2] artifact 2022. Crawljax. https://github.com/crawljax/crawljax
[3] artifact 2022. KeyBERT. https://github.com/MaartenGr/KeyBERT
[4] artifact 2022. Our experiment infrastructure, data, and results. https://github.com/

sweetStreet/AST-2022-submission/
[5] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.

2019. Web test dependency detection. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 154–164.

[6] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-
Based Web Test Generation. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 142–153. https://doi.org/10.1145/3338906.3338970

[7] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-
based web test generation. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 142–153.

[8] Dave Binkley, Dawn Lawrie, Lori Pollock, Emily Hill, and K Vijay-Shanker. 2013.
A dataset for evaluating identifier splitters. In 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, 401–404.

[9] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean.
2007. Large Language Models in Machine Translation. In EMNLP-CoNLL 2007,
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, June 28-30, 2007, Prague,
Czech Republic, Jason Eisner (Ed.). ACL, 858–867. https://aclanthology.org/D07-
1090/

[10] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335–336.

[11] Boris Chidlovskii and Jérôme Fuselier. 2005. A Probabilistic Learning Method for
XML Annotation of Documents.. In IJCAI. Citeseer, 1016–1021.

[12] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. 2011.
WATER: Web Application TEst Repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering (Toronto, Ontario, Canada) (ETSE
’11). Association for Computing Machinery, New York, NY, USA, 24–29. https:
//doi.org/10.1145/2002931.2002935

[13] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating Unit Tests
with Descriptive Names or: Would You Name Your Children Thing1 and Thing2?.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 57–67. https://doi.org/10.1145/3092703.3092727

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313–324. https://doi.org/10.1145/
2642937.2642982

[15] Robot Framework. 2020. Robot Framework Introduction. Technical Report. Re-
trieved 18-9-2020, 2020, from https://robotframework. org/# introduction.

[16] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2015. Does Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study. ACM Trans. Softw. Eng. Methodol., Article 23 (Sept.
2015). https://doi.org/10.1145/2699688

[17] Mark Grechanik, Qing Xie, and Chen Fu. 2009. Maintaining and evolving GUI-
directed test scripts. In 2009 IEEE 31st International Conference on Software Engi-
neering. 408–418. https://doi.org/10.1109/ICSE.2009.5070540

[18] Maarten Grootendorst. 2020. KeyBERT: Minimal keyword extraction with BERT.
https://doi.org/10.5281/zenodo.4461265

[19] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. EXSYST: Search-based
GUI testing. In 2012 34th International Conference on Software Engineering (ICSE).
1423–1426. https://doi.org/10.1109/ICSE.2012.6227232

[20] Mouna Hammoudi, Gregg Rothermel, and Paolo Tonella. 2016. Why do record/re-
play tests of web applications break?. In 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 180–190.

[21] Mark Johnson. 2010. PCFGs, Topic Models, Adaptor Grammars and Learning
Topical Collocations and the Structure of Proper Names. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics. 1148–1157.

[22] Anup K Kalia, Raghav Batta, Jin Xiao, Maja Vukovic, et al. [n. d.]. Ensemble of
Unsupervised Parametric and Non-Parametric Techniques to Discover Change
Actions. ([n. d.]).

[23] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto.
2021. NLP-assistedWeb Element Identification Toward Script-free Testing. In 2021
IEEE International Conference on Software Maintenance and Evolution (ICSME).
639–643. https://doi.org/10.1109/ICSME52107.2021.00072

[24] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto.
2021. NLP-assistedWeb Element Identification Toward Script-free Testing. In 2021
IEEE International Conference on Software Maintenance and Evolution (ICSME).
639–643. https://doi.org/10.1109/ICSME52107.2021.00072

[25] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2016. Ap-
proaches and Tools for Automated End-to-End Web Testing. Advances in Com-
puters, Vol. 101. 193–237. https://doi.org/10.1016/bs.adcom.2015.11.007

[26] Boyang Li, Christopher Vendome, Mario Linares-Vásquez, Denys Poshyvanyk,
and Nicholas A. Kraft. 2016. Automatically Documenting Unit Test Cases. In
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST). 341–352. https://doi.org/10.1109/ICST.2016.30

[27] library 2022. NLTK grammar library. https://www.nltk.org/api/nltk.grammar.
html

[28] library 2022. NLTK VerbNet library. https://www.nltk.org/_modules/nltk/corpus/
reader/verbnet.html

[29] library 2022. Standford CoreNLP Toolkit. https://stanfordnlp.github.io/stanza/
client_properties.html

[30] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[31] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020.
WebRR: Self-Replay Enhanced Robust Record/Replay forWebApplication Testing.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 1498–1508. https://doi.org/10.1145/3368089.3417069

[32] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-Based Testing
of Ajax Web Applications. In 2008 1st International Conference on Software Testing,
Verification, and Validation. 121–130. https://doi.org/10.1109/ICST.2008.22

[33] AliMesbah, Arie vanDeursen, andDanny Roest. 2012. Invariant-BasedAutomatic
Testing of Modern Web Applications. IEEE Transactions on Software Engineering
38, 1 (2012), 35–53. https://doi.org/10.1109/TSE.2011.28

[34] N Moratanch and S Chitrakala. 2016. A survey on abstractive text summarization.
In 2016 International Conference on Circuit, power and computing technologies
(ICCPCT). IEEE, 1–7.

[35] N Moratanch and S Chitrakala. 2017. A survey on extractive text summarization.
In 2017 international conference on computer, communication and signal processing
(ICCCSP). IEEE, 1–6.

[36] Laura Moreno and Andrian Marcus. 2018. Automatic Software Summarization:
The State of the Art. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. 530–531. https://doi.org/10.1145/3183440.
3183464

[37] Saikat Mukherjee, Guizhen Yang, and IV Ramakrishnan. 2003. Automatic an-
notation of content-rich html documents: Structural and semantic analysis. In
International Semantic Web Conference. Springer, 533–549.

[38] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The Impact of Test Case Summaries on Bug Fixing Perfor-
mance: An Empirical Investigation. In Proceedings of the 38th International Confer-
ence on Software Engineering. 547–558. https://doi.org/10.1145/2884781.2884847

[39] Eirini Papagiannopoulou and Grigorios Tsoumakas. 2020. A review of keyphrase
extraction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
10, 2 (2020), e1339.

[40] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated unit test
generation during software development: a controlled experiment and think-
aloud observations. In Proceedings of the 24th International Symposium on Software
Testing and Analysis. ACM, 338–349.

[41] Karin Kipper Schuler. 2005. VerbNet: A broad-coverage, comprehensive verb lexicon.
University of Pennsylvania.

[42] selenium 2022. Selenium WebDriver. https://www.selenium.dev/documentation/
webdriver/

[43] Himat Shah, Mohammad Rezaei, and Pasi Fränti. 2019. DOM-based keyword
extraction from web pages. In Proceedings of the International Conference on
Artificial Intelligence, Information Processing and Cloud Computing. 1–6.

[44] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017. APOGEN:
Automatic Page Object Generator for Web Testing. Software Quality Journal 25,
3 (sep 2017), 1007–1039. https://doi.org/10.1007/s11219-016-9331-9

[45] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web Test
Repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 503–514. https://doi.org/10.1145/3236024.3236063

[46] Suresh Thummalapenta, K. Vasanta Lakshmi, Saurabh Sinha, Nishant Sinha,
and Satish Chandra. 2013. Guided Test Generation for Web Applications. In
Proceedings of the 2013 International Conference on Software Engineering. 162–171.

[47] Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Campos, and Arnold Overwijk.
2019. Open Domain Web Keyphrase Extraction Beyond Language Modeling. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,

https://doi.org/10.1109/DSN.2011.5958253
https://doi.org/10.1109/DSN.2011.5958253
https://github.com/crawljax/crawljax
https://github.com/MaartenGr/KeyBERT
https://github.com/sweetStreet/AST-2022-submission/
https://github.com/sweetStreet/AST-2022-submission/
https://doi.org/10.1145/3338906.3338970
https://aclanthology.org/D07-1090/
https://aclanthology.org/D07-1090/
https://doi.org/10.1145/2002931.2002935
https://doi.org/10.1145/2002931.2002935
https://doi.org/10.1145/3092703.3092727
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2699688
https://doi.org/10.1109/ICSE.2009.5070540
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.1109/ICSE.2012.6227232
https://doi.org/10.1109/ICSME52107.2021.00072
https://doi.org/10.1109/ICSME52107.2021.00072
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1109/ICST.2016.30
https://www.nltk.org/api/nltk.grammar.html
https://www.nltk.org/api/nltk.grammar.html
https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html
https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html
https://stanfordnlp.github.io/stanza/client_properties.html
https://stanfordnlp.github.io/stanza/client_properties.html
https://doi.org/10.1145/3368089.3417069
https://doi.org/10.1109/ICST.2008.22
https://doi.org/10.1109/TSE.2011.28
https://doi.org/10.1145/3183440.3183464
https://doi.org/10.1145/3183440.3183464
https://doi.org/10.1145/2884781.2884847
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1145/3236024.3236063

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Yu Liu, Rahulkrishna Yandrapally, Anup K. Kalia, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah

5175–5184. https://doi.org/10.18653/v1/D19-1521
[48] Rahulkrishna Yandrapally andAliMesbah. 2021. Fragment-Based Test Generation

For Web Apps. CoRR abs/2110.14043 (2021). arXiv:2110.14043 https://arxiv.org/
abs/2110.14043

[49] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish
Chandra. 2014. Robust Test Automation Using Contextual Clues. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis (San Jose,
CA, USA) (ISSTA 2014). Association for Computing Machinery, New York, NY,
USA, 304–314. https://doi.org/10.1145/2610384.2610390

[50] Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence 29, 6 (2007), 1091–1095.

[51] Yuxiang Zhu and Minxue Pan. 2019. Automatic Code Summarization: A Sys-
tematic Literature Review. CoRR abs/1909.04352 (2019). arXiv:1909.04352
http://arxiv.org/abs/1909.04352

https://doi.org/10.18653/v1/D19-1521
https://arxiv.org/abs/2110.14043
https://arxiv.org/abs/2110.14043
https://arxiv.org/abs/2110.14043
https://doi.org/10.1145/2610384.2610390
https://arxiv.org/abs/1909.04352
http://arxiv.org/abs/1909.04352

	Abstract
	1 Introduction
	2 Background
	2.1 UI Testing for Web Apps
	2.2 AI Frameworks

	3 Our Technique
	3.1 Supervised approach
	3.2 Unsupervised Approach

	4 Implementation
	5 Empirical Evaluation
	5.1 Benchmark Applications
	5.2 Evaluation Metrics
	5.3 Baseline Techniques
	5.4 Results and Analysis
	5.5 Discussion
	5.6 Threats to Validity

	6 Related Work
	7 Summary and Future Work
	References

